
QUIC M. Bishop, Ed.
Internet-Draft Microsoft
Intended status: Standards Track October 13, 2017
Expires: April 16, 2018

Hypertext Transfer Protocol (HTTP) over QUIC
draft-ietf-quic-http-07

Abstract

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC. This document also
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how HTTP/2 extensions can be ported to QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at

https://github.com/quicwg/base-drafts/labels/http [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 16, 2018.

Bishop Expires April 16, 2018 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/http
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP over QUIC October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3

2. QUIC Advertisement . 4
2.1. QUIC Version Hints 4

3. Connection Establishment 5
3.1. Draft Version Identification 5

4. Stream Mapping and Usage 5
4.1. Stream 1: Control Stream 6
4.2. HTTP Message Exchanges 6
4.2.1. Header Compression 7
4.2.2. The CONNECT Method 8

4.3. Request Prioritization 9
4.4. Server Push . 9

5. HTTP Framing Layer . 10
5.1. Frame Layout . 11
5.2. Frame Definitions . 11
5.2.1. DATA . 11
5.2.2. HEADERS . 11
5.2.3. PRIORITY . 12
5.2.4. CANCEL_PUSH . 13
5.2.5. SETTINGS . 14
5.2.6. PUSH_PROMISE . 17
5.2.7. GOAWAY . 18
5.2.8. MAX_PUSH_ID . 20

6. Connection Management . 20
7. Error Handling . 21
7.1. HTTP/QUIC Error Codes 21

8. Considerations for Transitioning from HTTP/2 22
8.1. HTTP Frame Types . 23
8.2. HTTP/2 SETTINGS Parameters 25
8.3. HTTP/2 Error Codes 25

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bishop Expires April 16, 2018 [Page 2]

Internet-Draft HTTP over QUIC October 2017

9. Security Considerations 26
10. IANA Considerations . 27
10.1. Registration of HTTP/QUIC Identification String 27
10.2. Registration of QUIC Version Hint Alt-Svc Parameter . . 27
10.3. Frame Types . 27
10.4. Settings Parameters 28
10.5. Error Codes . 29

11. References . 32
11.1. Normative References 32
11.2. Informative References 33
11.3. URIs . 33

Appendix A. Contributors . 33
Appendix B. Change Log . 33
B.1. Since draft-ietf-quic-http-06 33
B.2. Since draft-ietf-quic-http-05 33
B.3. Since draft-ietf-quic-http-04 33
B.4. Since draft-ietf-quic-http-03 34
B.5. Since draft-ietf-quic-http-02 34
B.6. Since draft-ietf-quic-http-01 34
B.7. Since draft-ietf-quic-http-00 35
B.8. Since draft-shade-quic-http2-mapping-00 35

 Author's Address . 35

1. Introduction

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP, such as stream multiplexing, per-stream flow
 control, and low-latency connection establishment. This document
 describes a mapping of HTTP semantics over QUIC, drawing heavily on
 the existing TCP mapping, HTTP/2. Specifically, this document
 identifies HTTP/2 features that are subsumed by QUIC, and describes
 how the other features can be implemented atop QUIC.

 QUIC is described in [QUIC-TRANSPORT]. For a full description of
 HTTP/2, see [RFC7540].

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting; when they are capitalized, they have
 the special meaning defined in [RFC2119].

 Field definitions are given in Augmented Backus-Naur Form (ABNF), as
 defined in [RFC5234].

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-00
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234

Bishop Expires April 16, 2018 [Page 3]

Internet-Draft HTTP over QUIC October 2017

2. QUIC Advertisement

 An HTTP origin advertises the availability of an equivalent HTTP/QUIC
 endpoint via the Alt-Svc HTTP response header or the HTTP/2 ALTSVC
 frame ([RFC7838]), using the ALPN token defined in Section 3.

 For example, an origin could indicate in an HTTP/1.1 or HTTP/2
 response that HTTP/QUIC was available on UDP port 50781 at the same
 hostname by including the following header in any response:

 Alt-Svc: hq=":50781"

 On receipt of an Alt-Svc header indicating HTTP/QUIC support, a
 client MAY attempt to establish a QUIC connection to the indicated
 host and port and, if successful, send HTTP requests using the
 mapping described in this document.

 Connectivity problems (e.g. firewall blocking UDP) can result in QUIC
 connection establishment failure, in which case the client SHOULD
 continue using the existing connection or try another alternative
 endpoint offered by the origin.

 Servers MAY serve HTTP/QUIC on any UDP port. Servers MUST use the
 same port across all IP addresses that serve a single domain, and
 SHOULD NOT change this port.

2.1. QUIC Version Hints

 This document defines the "quic" parameter for Alt-Svc, which MAY be
 used to provide version-negotiation hints to HTTP/QUIC clients. QUIC
 versions are four-octet sequences with no additional constraints on
 format. Syntax:

 quic = version-number
 version-number = 1*8HEXDIG; hex-encoded QUIC version

 Leading zeros SHOULD be omitted for brevity. When multiple versions
 are supported, the "quic" parameter MAY be repeated multiple times in
 a single Alt-Svc entry. For example, if a server supported both
 version 0x00000001 and the version rendered in ASCII as "Q034", it
 could specify the following header:

 Alt-Svc: hq=":49288";quic=1;quic=51303334

 Where multiple versions are listed, the order of the values reflects
 the server's preference (with the first value being the most
 preferred version). Origins SHOULD list only versions which are

https://datatracker.ietf.org/doc/html/rfc7838

Bishop Expires April 16, 2018 [Page 4]

Internet-Draft HTTP over QUIC October 2017

 supported by the alternative, but MAY omit supported versions for any
 reason.

3. Connection Establishment

 HTTP/QUIC connections are established as described in
 [QUIC-TRANSPORT]. During connection establishment, HTTP/QUIC support
 is indicated by selecting the ALPN token "hq" in the crypto
 handshake.

 While connection-level options pertaining to the core QUIC protocol
 are set in the initial crypto handshake, HTTP-specific settings are
 conveyed in the SETTINGS frame. After the QUIC connection is
 established, a SETTINGS frame (Section 5.2.5) MUST be sent as the
 initial frame of the HTTP control stream (Stream ID 1, see

Section 4). The server MUST NOT send data on any other stream until
 the client's SETTINGS frame has been received.

3.1. Draft Version Identification

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Only implementations of the final, published RFC can identify
 themselves as "hq". Until such an RFC exists, implementations MUST
 NOT identify themselves using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-" and the corresponding draft number to the identifier. For
 example, draft-ietf-quic-http-01 is identified using the string "hq-
 01".

 Non-compatible experiments that are based on these draft versions
 MUST append the string "-" and an experiment name to the identifier.
 For example, an experimental implementation based on draft-ietf-quic-

http-09 which reserves an extra stream for unsolicited transmission
 of 1980s pop music might identify itself as "hq-09-rickroll". Note
 that any label MUST conform to the "token" syntax defined in

Section 3.2.6 of [RFC7230]. Experimenters are encouraged to
 coordinate their experiments on the quic@ietf.org mailing list.

4. Stream Mapping and Usage

 A QUIC stream provides reliable in-order delivery of bytes, but makes
 no guarantees about order of delivery with regard to bytes on other
 streams. On the wire, data is framed into QUIC STREAM frames, but
 this framing is invisible to the HTTP framing layer. A QUIC receiver

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-09
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

Bishop Expires April 16, 2018 [Page 5]

Internet-Draft HTTP over QUIC October 2017

 buffers and orders received STREAM frames, exposing the data
 contained within as a reliable byte stream to the application.

 QUIC reserves Stream 0 for crypto operations (the handshake, crypto
 config updates). Stream 1 is reserved for sending and receiving HTTP
 control frames, and is analogous to HTTP/2's Stream 0. This control
 stream is considered critical to the HTTP connection. If the control
 stream is closed for any reason, this MUST be treated as a connection
 error of type QUIC_CLOSED_CRITICAL_STREAM.

 When HTTP headers and data are sent over QUIC, the QUIC layer handles
 most of the stream management. An HTTP request/response consumes a
 single stream: This means that the client's first request occurs on
 QUIC stream 3, the second on stream 5, and so on. The server's first
 push consumes stream 2.

 This stream carries frames related to the request/response (see
Section 5.2). When a stream terminates cleanly, if the last frame on

 the stream was truncated, this MUST be treated as a connection error
 (see HTTP_MALFORMED_* in Section 7.1). Streams which terminate
 abruptly may be reset at any point in the frame.

 Streams SHOULD be used sequentially, with no gaps. Streams used for
 pushed resources MAY be initiated out-of-order, but stream IDs SHOULD
 be allocated to promised resources sequentially.

 HTTP does not need to do any separate multiplexing when using QUIC -
 data sent over a QUIC stream always maps to a particular HTTP
 transaction. Requests and responses are considered complete when the
 corresponding QUIC stream is closed in the appropriate direction.

4.1. Stream 1: Control Stream

 Since most connection-level concerns will be managed by QUIC, the
 primary use of Stream 1 will be for the SETTINGS frame when the
 connection opens and for PRIORITY frames subsequently.

4.2. HTTP Message Exchanges

 A client sends an HTTP request on a new QUIC stream. A server sends
 an HTTP response on the same stream as the request.

 An HTTP message (request or response) consists of:

 1. one header block (see Section 5.2.2) containing the message
 headers (see [RFC7230], Section 3.2),

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2

Bishop Expires April 16, 2018 [Page 6]

Internet-Draft HTTP over QUIC October 2017

 2. the payload body (see [RFC7230], Section 3.3), sent as a series
 of DATA frames (see Section 5.2.1),

 3. optionally, one header block containing the trailer-part, if
 present (see [RFC7230], Section 4.1.2).

 In addition, prior to sending the message header block indicated
 above, a response may contain zero or more header blocks containing
 the message headers of informational (1xx) HTTP responses (see

[RFC7230], Section 3.2 and [RFC7231], Section 6.2).

 PUSH_PROMISE frames MAY be interleaved with the frames of a response
 message indicating a pushed resource related to the response. These
 PUSH_PROMISE frames are not part of the response, but carry the
 headers of a separate HTTP request message. See Section 4.4 for more
 details.

 The "chunked" transfer encoding defined in Section 4.1 of [RFC7230]
 MUST NOT be used.

 Trailing header fields are carried in an additional header block
 following the body. Such a header block is a sequence of HEADERS
 frames with End Header Block set on the last frame. Senders MUST
 send only one header block in the trailers section; receivers MUST
 discard any subsequent header blocks.

 An HTTP request/response exchange fully consumes a QUIC stream.
 After sending a request, a client closes the stream for sending;
 after sending a response, the server closes the stream for sending
 and the QUIC stream is fully closed.

 A server can send a complete response prior to the client sending an
 entire request if the response does not depend on any portion of the
 request that has not been sent and received. When this is true, a
 server MAY request that the client abort transmission of a request
 without error by triggering a QUIC STOP_SENDING with error code
 HTTP_EARLY_RESPONSE, sending a complete response, and cleanly closing
 its streams. Clients MUST NOT discard complete responses as a result
 of having their request terminated abruptly, though clients can
 always discard responses at their discretion for other reasons.
 Servers MUST NOT abort a response in progress as a result of
 receiving a solicited RST_STREAM.

4.2.1. Header Compression

 HTTP/QUIC uses HPACK header compression as described in [RFC7541].
 HPACK was designed for HTTP/2 with the assumption of in-order
 delivery such as that provided by TCP. A sequence of encoded header

https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-6.2
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1
https://datatracker.ietf.org/doc/html/rfc7541

Bishop Expires April 16, 2018 [Page 7]

Internet-Draft HTTP over QUIC October 2017

 blocks must arrive (and be decoded) at an endpoint in the same order
 in which they were encoded. This ensures that the dynamic state at
 the two endpoints remains in sync.

 QUIC streams provide in-order delivery of data sent on those streams,
 but there are no guarantees about order of delivery between streams.
 QUIC anticipates moving to a modified version of HPACK without this
 assumption. In the meantime, by fixing the size of the dynamic table
 at zero, HPACK can be used in an unordered environment.

4.2.2. The CONNECT Method

 The pseudo-method CONNECT ([RFC7231], Section 4.3.6) is primarily
 used with HTTP proxies to establish a TLS session with an origin
 server for the purposes of interacting with "https" resources. In
 HTTP/1.x, CONNECT is used to convert an entire HTTP connection into a
 tunnel to a remote host. In HTTP/2, the CONNECT method is used to
 establish a tunnel over a single HTTP/2 stream to a remote host for
 similar purposes.

 A CONNECT request in HTTP/QUIC functions in the same manner as in
 HTTP/2. The request MUST be formatted as described in [RFC7540],
 Section 8.3. A CONNECT request that does not conform to these
 restrictions is malformed. The message data stream MUST NOT be
 closed at the end of the request.

 A proxy that supports CONNECT establishes a TCP connection
 ([RFC0793]) to the server identified in the ":authority" pseudo-
 header field. Once this connection is successfully established, the
 proxy sends a HEADERS frame containing a 2xx series status code to
 the client, as defined in [RFC7231], Section 4.3.6.

 All DATA frames on the request stream correspond to data sent on the
 TCP connection. Any DATA frame sent by the client is transmitted by
 the proxy to the TCP server; data received from the TCP server is
 packaged into DATA frames by the proxy. Note that the size and
 number of TCP segments is not guaranteed to map predictably to the
 size and number of HTTP DATA or QUIC STREAM frames.

 The TCP connection can be closed by either peer. When the client
 half-closes the request stream, the proxy will set the FIN bit on its
 connection to the TCP server. When the proxy receives a packet with
 the FIN bit set, it will half-close the corresponding stream. TCP
 connections which remain half-closed in a single direction are not
 invalid, but are often handled poorly by servers, so clients SHOULD
 NOT half-close connections on which they are still expecting data.

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6
https://datatracker.ietf.org/doc/html/rfc7540#section-8.3
https://datatracker.ietf.org/doc/html/rfc7540#section-8.3
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6

Bishop Expires April 16, 2018 [Page 8]

Internet-Draft HTTP over QUIC October 2017

 A TCP connection error is signaled with RST_STREAM. A proxy treats
 any error in the TCP connection, which includes receiving a TCP
 segment with the RST bit set, as a stream error of type
 HTTP_CONNECT_ERROR (Section 7.1). Correspondingly, a proxy MUST send
 a TCP segment with the RST bit set if it detects an error with the
 stream or the QUIC connection.

4.3. Request Prioritization

 HTTP/QUIC uses the priority scheme described in [RFC7540],
 Section 5.3. In this priority scheme, a given request can be
 designated as dependent upon another request, which expresses the
 preference that the latter stream (the "parent" request) be allocated
 resources before the former stream (the "dependent" request). Taken
 together, the dependencies across all requests in a connection form a
 dependency tree. The structure of the dependency tree changes as
 PRIORITY frames add, remove, or change the dependency links between
 requests.

 HTTP/2 defines its priorities in terms of streams whereas HTTP over
 QUIC identifies requests. The PRIORITY frame Section 5.2.3
 identifies a request either by identifying the stream that carries a
 request or by using a Push ID (Section 5.2.6). Other than the means
 of identifying requests, the prioritization system is identical to
 that in HTTP/2.

 Only a client can send PRIORITY frames. A server MUST NOT send a
 PRIORITY frame.

4.4. Server Push

 HTTP/QUIC supports server push as described in [RFC7540]. During
 connection establishment, the client enables server push by sending a
 MAX_PUSH_ID frame (see Section 5.2.8). A server cannot use server
 push until it receives a MAX_PUSH_ID frame.

 As with server push for HTTP/2, the server initiates a server push by
 sending a PUSH_PROMISE frame that includes request header fields
 attributed to the request. The PUSH_PROMISE frame is sent on a
 response stream. Unlike HTTP/2, the PUSH_PROMISE does not reference
 a stream; when a server fulfills a promise, the stream that carries
 the stream headers references the PUSH_PROMISE. This allows a server
 to fulfill promises in the order that best suits its needs.

 The server push response is conveyed on a push stream. A push stream
 is a server-initiated stream. A push stream includes a header (see
 Figure 1) that identifies the PUSH_PROMISE that it fulfills. This

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires April 16, 2018 [Page 9]

Internet-Draft HTTP over QUIC October 2017

 header consists of a 32-bit Push ID, which identifies a server push
 (see Section 5.2.6).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (32) |
 +-+

 Figure 1: Push Stream Header

 A push stream always starts with a 32-bit Push ID. A client MUST
 treat receiving a push stream that contains fewer than 4 octets as a
 connection error of type HTTP_MALFORMED_PUSH.

 A server SHOULD use Push IDs sequentially, starting at 0. A client
 uses the MAX_PUSH_ID frame (Section 5.2.8) to limit the number of
 pushes that a server can promise. A client MUST treat receipt of a
 push stream with a Push ID that is greater than the maximum Push ID
 as a connection error of type HTTP_MALFORMED_PUSH.

 Each Push ID MUST only be used once in a push stream header. If a
 push stream header includes a Push ID that was used in another push
 stream header, the client MUST treat this as a connection error of
 type HTTP_MALFORMED_PUSH. The same Push ID can be used in multiple
 PUSH_PROMISE frames (see Section 5.2.6).

 After the push stream header, a push contains a response
 (Section 4.2), with response headers, a response body (if any)
 carried by DATA frames, then trailers (if any) carried by HEADERS
 frames.

 If a promised server push is not needed by the client, the client
 SHOULD send a CANCEL_PUSH frame; if the push stream is already open,
 a QUIC STOP_SENDING frame with an appropriate error code can be used
 instead (e.g., HTTP_PUSH_REFUSED, HTTP_PUSH_ALREADY_IN_CACHE; see

Section 7). This asks the server not to transfer the data and
 indicates that it will be discarded upon receipt.

5. HTTP Framing Layer

 Frames are used on each stream. This section describes HTTP framing
 in QUIC and highlights some differences from HTTP/2 framing. For
 more detail on differences from HTTP/2, see Section 8.1.

Bishop Expires April 16, 2018 [Page 10]

Internet-Draft HTTP over QUIC October 2017

5.1. Frame Layout

 All frames have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (16) | Type (8) | Flags (8) |
 +-+
 | Frame Payload (*) ...
 +-+

 Figure 2: HTTP/QUIC frame format

5.2. Frame Definitions

5.2.1. DATA

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 octets associated with an HTTP request or response payload.

 The DATA frame defines no flags.

 DATA frames MUST be associated with an HTTP request or response. If
 a DATA frame is received on the control stream, the recipient MUST
 respond with a connection error (Section 7) of type
 HTTP_WRONG_STREAM.

 DATA frames MUST contain a non-zero-length payload. If a DATA frame
 is received with a payload length of zero, the recipient MUST respond
 with a stream error (Section 7) of type HTTP_MALFORMED_DATA.

5.2.2. HEADERS

 The HEADERS frame (type=0x1) is used to carry part of a header set,
 compressed using HPACK Section 4.2.1.

 One flag is defined:

 End Header Block (0x4): This frame concludes a header block.

 A HEADERS frame with any other flags set MUST be treated as a
 connection error of type HTTP_MALFORMED_HEADERS.

 The next frame on the same stream after a HEADERS frame without the
 EHB flag set MUST be another HEADERS frame. A receiver MUST treat
 the receipt of any other type of frame as a stream error of type
 HTTP_INTERRUPTED_HEADERS. (Note that QUIC can intersperse data from

Bishop Expires April 16, 2018 [Page 11]

Internet-Draft HTTP over QUIC October 2017

 other streams between frames, or even during transmission of frames,
 so multiplexing is not blocked by this requirement.)

 A full header block is contained in a sequence of zero or more
 HEADERS frames without EHB set, followed by a HEADERS frame with EHB
 set.

5.2.3. PRIORITY

 The PRIORITY (type=0x02) frame specifies the sender-advised priority
 of a stream and is substantially different in format from [RFC7540].
 In order to ensure that prioritization is processed in a consistent
 order, PRIORITY frames MUST be sent on the control stream. A
 PRIORITY frame sent on any other stream MUST be treated as a
 HTTP_WRONG_STREAM error.

 The format has been modified to accommodate not being sent on a
 request stream, to allow for identification of server pushes, and the
 larger stream ID space of QUIC. The semantics of the Stream
 Dependency, Weight, and E flag are otherwise the same as in HTTP/2.

 The flags defined are:

 PUSH_PRIORITIZED (0x04): Indicates that the Prioritized Stream is a
 server push rather than a request.

 PUSH_DEPENDENT (0x02): Indicates a dependency on a server push.

 E (0x01): Indicates that the stream dependency is exclusive (see
[RFC7540], Section 5.3).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Prioritized Request ID (32) |
 +-+
 | Stream Dependency ID (32) |
 +-+
 | Weight (8) |
 +-+-+-+-+-+-+-+-+

 Figure 3: PRIORITY frame payload

 The PRIORITY frame payload has the following fields:

 Prioritized Request ID: A 32-bit identifier for a request. This
 contains the stream ID of a request stream when the

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3

Bishop Expires April 16, 2018 [Page 12]

Internet-Draft HTTP over QUIC October 2017

 PUSH_PRIORITIZED flag is clear, or a Push ID when the
 PUSH_PRIORITIZED flag is set.

 Stream Dependency ID: A 32-bit stream identifier for a dependent
 request. This contains the stream ID of a request stream when the
 PUSH_DEPENDENT flag is clear, or a Push ID when the PUSH_DEPENDENT
 flag is set. A request stream ID of 0 indicates a dependency on
 the root stream. For details of dependencies, see Section 4.3 and

[RFC7540], Section 5.3.

 Weight: An unsigned 8-bit integer representing a priority weight for
 the stream (see [RFC7540], Section 5.3). Add one to the value to
 obtain a weight between 1 and 256.

 A PRIORITY frame identifies a request to priotize, and a request upon
 which that request is dependent. A Prioritized Request ID or Stream
 Dependency ID identifies a client-initiated request using the
 corresponding stream ID when the corresponding PUSH_PRIORITIZED or
 PUSH_DEPENDENT flag is not set. Setting the PUSH_PRIORITIZED or
 PUSH_DEPENDENT flag causes the Prioritized Request ID or Stream
 Dependency ID (respectively) to identify a server push using a Push
 ID (see Section 5.2.6 for details).

 A PRIORITY frame MAY identify a Stream Dependency ID using a stream
 ID of 0; as in [RFC7540], this makes the request dependent on the
 root of the dependency tree.

 Stream ID 0 and stream ID 1 cannot be reprioritized. A Prioritized
 Request ID that identifies Stream 0 or 1 MUST be treated as a
 connection error of type HTTP_MALFORMED_PRIORITY.

 A PRIORITY frame that does not reference a request MUST be treated as
 a HTTP_MALFORMED_PRIORITY error, unless it references stream ID 0. A
 PRIORITY that sets a PUSH_PRIORITIZED or PUSH_DEPENDENT flag, but
 then references a non-existent Push ID MUST be treated as a
 HTTP_MALFORMED_PRIORITY error.

 The length of a PRIORITY frame is 9 octets. A PRIORITY frame with
 any other length MUST be treated as a connection error of type
 HTTP_MALFORMED_PRIORITY.

5.2.4. CANCEL_PUSH

 The CANCEL_PUSH frame (type=0x3) is used to request cancellation of
 server push prior to the push stream being created. The CANCEL_PUSH
 frame identifies a server push request by Push ID (see

Section 5.2.6).

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires April 16, 2018 [Page 13]

Internet-Draft HTTP over QUIC October 2017

 When a server receives this frame, it aborts sending the response for
 the identified server push. If the server has not yet started to
 send the server push, it can use the receipt of a CANCEL_PUSH frame
 to avoid opening a stream. If the push stream has been opened by the
 server, the server SHOULD sent a QUIC RST_STREAM frame on those
 streams and cease transmission of the response.

 A server can send this frame to indicate that it won't be sending a
 response prior to creation of a push stream. Once the push stream
 has been created, sending CANCEL_PUSH has no effect on the state of
 the push stream. A QUIC RST_STREAM frame SHOULD be used instead to
 cancel transmission of the server push response.

 A CANCEL_PUSH frame is sent on the control stream. Sending a
 CANCEL_PUSH frame on a stream other than the control stream MUST be
 treated as a stream error of type HTTP_WRONG_STREAM.

 The CANCEL_PUSH frame has no defined flags.

 The CANCEL_PUSH frame carries a 32-bit Push ID that identifies the
 server push that is being cancelled (see Section 5.2.6).

 If the client receives a CANCEL_PUSH frame, that frame might identify
 a Push ID that has not yet been mentioned by a PUSH_PROMISE frame.

 A server MUST treat a CANCEL_PUSH frame payload that is other than 4
 octets in length as a connection error of type
 HTTP_MALFORMED_CANCEL_PUSH.

5.2.5. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior, and is different from [RFC7540]. Individually, a
 SETTINGS parameter can also be referred to as a "setting".

 SETTINGS parameters are not negotiated; they describe characteristics
 of the sending peer, which can be used by the receiving peer.
 However, a negotiation can be implied by the use of SETTINGS - a peer
 uses SETTINGS to advertise a set of supported values. The recipient
 can then choose which entries from this list are also acceptable and
 proceed with the value it has chosen. (This choice could be
 announced in a field of an extension frame, or in its own value in
 SETTINGS.)

 Different values for the same parameter can be advertised by each
 peer. For example, a client might be willing to consume very large
 response headers, while servers are more cautious about request size.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires April 16, 2018 [Page 14]

Internet-Draft HTTP over QUIC October 2017

 Parameters MUST NOT occur more than once. A receiver MAY treat the
 presence of the same parameter more than once as a connection error
 of type HTTP_MALFORMED_SETTINGS.

 The SETTINGS frame defines no flags.

 The payload of a SETTINGS frame consists of zero or more parameters,
 each consisting of an unsigned 16-bit setting identifier and a
 length-prefixed binary value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Identifier (16) | Length (16) |
 +-+
 | Contents (?) ...
 +-+

 Figure 4: SETTINGS value format

 A zero-length content indicates that the setting value is a Boolean
 and true. False is indicated by the absence of the setting.

 Non-zero-length values MUST be compared against the remaining length
 of the SETTINGS frame. Any value which purports to cross the end of
 the frame MUST cause the SETTINGS frame to be considered malformed
 and trigger a connection error of type HTTP_MALFORMED_SETTINGS.

 An implementation MUST ignore the contents for any SETTINGS
 identifier it does not understand.

 SETTINGS frames always apply to a connection, never a single stream.
 A SETTINGS frame MUST be sent as the first frame of the control
 stream (see Section 4) by each peer, and MUST NOT be sent
 subsequently or on any other stream. If an endpoint receives an
 SETTINGS frame on a different stream, the endpoint MUST respond with
 a connection error of type HTTP_WRONG_STREAM. If an endpoint
 receives a second SETTINGS frame, the endpoint MUST respond with a
 connection error of type HTTP_MULTIPLE_SETTINGS.

 The SETTINGS frame affects connection state. A badly formed or
 incomplete SETTINGS frame MUST be treated as a connection error
 (Section 7) of type HTTP_MALFORMED_SETTINGS.

Bishop Expires April 16, 2018 [Page 15]

Internet-Draft HTTP over QUIC October 2017

5.2.5.1. Integer encoding

 Settings which are integers are transmitted in network byte order.
 Leading zero octets are permitted, but implementations SHOULD use
 only as many bytes as are needed to represent the value. An integer
 MUST NOT be represented in more bytes than would be used to transfer
 the maximum permitted value.

5.2.5.2. Defined SETTINGS Parameters

 The following settings are defined in HTTP/QUIC:

 SETTINGS_HEADER_TABLE_SIZE (0x1): An integer with a maximum value of
 2^32 - 1. This value MUST be zero.

 SETTINGS_MAX_HEADER_LIST_SIZE (0x6): An integer with a maximum value
 of 2^32 - 1

5.2.5.3. Usage in 0-RTT

 When a 0-RTT QUIC connection is being used, the client's initial
 requests will be sent before the arrival of the server's SETTINGS
 frame. Clients SHOULD cache at least the following settings about
 servers:

 o SETTINGS_HEADER_TABLE_SIZE

 o SETTINGS_MAX_HEADER_LIST_SIZE

 Clients MUST comply with cached settings until the server's current
 settings are received. If a client does not have cached values, it
 SHOULD assume the following values:

 o SETTINGS_HEADER_TABLE_SIZE: 0 octets

 o SETTINGS_MAX_HEADER_LIST_SIZE: 16,384 octets

 Servers MAY continue processing data from clients which exceed its
 current configuration during the initial flight. In this case, the
 client MUST apply the new settings immediately upon receipt.

 If the connection is closed because these or other constraints were
 violated during the 0-RTT flight (e.g. with
 HTTP_HPACK_DECOMPRESSION_FAILED), clients MAY establish a new
 connection and retry any 0-RTT requests using the settings sent by
 the server on the closed connection. (This assumes that only
 requests that are safe to retry are sent in 0-RTT.) If the
 connection was closed before the SETTINGS frame was received, clients

Bishop Expires April 16, 2018 [Page 16]

Internet-Draft HTTP over QUIC October 2017

 SHOULD discard any cached values and use the defaults above on the
 next connection.

5.2.6. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x05) is used to carry a request header
 set from server to client, as in HTTP/2. The PUSH_PROMISE frame
 defines no flags.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Push ID (32) |
 +-+
 | Header Block (*) ...
 +-+

 Figure 5: PUSH_PROMISE frame payload

 The payload consists of:

 Push ID: A 32-bit identifier for the server push request. A push ID
 is used in push stream header (Section 4.4), CANCEL_PUSH frames
 (Section 5.2.4), and PRIORITY frames (Section 5.2.3).

 Header Block: HPACK-compressed request headers for the promised
 response.

 A server MUST NOT use a Push ID that is larger than the client has
 provided in a MAX_PUSH_ID frame (Section 5.2.8). A client MUST treat
 receipt of a PUSH_PROMISE that contains a larger Push ID than the
 client has advertised as a connection error of type
 HTTP_MALFORMED_PUSH_PROMISE.

 A server MAY use the same Push ID in multiple PUSH_PROMISE frames.
 This allows the server to use the same server push in response to
 multiple concurrent requests. Referencing the same server push
 ensures that a PUSH_PROMISE can be made in relation to every response
 in which server push might be needed without duplicating pushes.

 A server that uses the same Push ID in multiple PUSH_PROMISE frames
 MUST include the same header fields each time. The octets of the
 header block MAY be different due to differing encoding, but the
 header fields and their values MUST be identical. Note that ordering
 of header fields is significant. A client MUST treat receipt of a
 PUSH_PROMISE with conflicting header field values for the same Push
 ID as a connection error of type HTTP_MALFORMED_PUSH_PROMISE.

Bishop Expires April 16, 2018 [Page 17]

Internet-Draft HTTP over QUIC October 2017

 Allowing duplicate references to the same Push ID is primarily to
 reduce duplication caused by concurrent requests. A server SHOULD
 avoid reusing a Push ID over a long period. Clients are likely to
 consume server push responses and not retain them for reuse over
 time. Clients that see a PUSH_PROMISE that uses a Push ID that they
 have since consumed and discarded are forced to ignore the
 PUSH_PROMISE.

5.2.7. GOAWAY

 The GOAWAY frame (type=0x7) is used to initiate graceful shutdown of
 a connection by a server. GOAWAY allows a server to stop accepting
 new requests while still finishing processing of previously received
 requests. This enables administrative actions, like server
 maintenance. GOAWAY by itself does not close a connection. (Note
 that clients do not need to send GOAWAY to gracefully close a
 connection; they simply stop making new requests.)

 The GOAWAY frame does not define any flags, and the payload is a QUIC
 stream identifier. The GOAWAY frame applies to the connection, not a
 specific stream. An endpoint MUST treat a GOAWAY frame on a stream
 other than the control stream as a connection error (Section 7) of
 type HTTP_WRONG_STREAM.

 New client requests might already have been sent before the client
 receives the server's GOAWAY frame. The GOAWAY frame contains the
 stream identifier of the last client-initiated request that was or
 might be processed in this connection, which enables client and
 server to agree on which requests were accepted prior to the
 connection shutdown. This identifier MAY be lower than the stream
 limit identified by a QUIC MAX_STREAM_ID frame, and MAY be zero if no
 requests were processed. Servers SHOULD NOT increase the
 MAX_STREAM_ID limit after sending a GOAWAY frame.

 Note: In this context, "processed" means that some data from the
 stream was passed to some higher layer of software that might have
 taken some action as a result.

 Once sent, the server will refuse requests sent on streams with an
 identifier higher than the included last stream identifier. Clients
 MUST NOT send new requests on the connection after receiving GOAWAY,
 although requests might already be in transit. A new connection can
 be established for new requests.

 If the client has sent requests on streams with a higher stream
 identifier than indicated in the GOAWAY frame, those requests were
 not and will not be processed. Endpoints SHOULD reset any streams
 above this ID with the error code HTTP_REQUEST_CANCELLED. Servers

Bishop Expires April 16, 2018 [Page 18]

Internet-Draft HTTP over QUIC October 2017

 MAY also reset streams below the indicated ID with
 HTTP_REQUEST_CANCELLED if the associated requests were not processed.
 Servers MUST NOT use the HTTP_REQUEST_CANCELLED status for requests
 which were partially or fully processed.

 The client can treat requests cancelled by the server as though they
 had never been sent at all, thereby allowing them to be retried later
 on a new connection. If a stream is cancelled after receiving a
 complete response, the client MAY ignore the cancellation and use the
 response. However, if a stream is cancelled after receiving a
 partial response, the response SHOULD NOT be used. Automatically
 retrying such requests is not possible, unless this is otherwise
 permitted (e.g. idempotent actions like GET, PUT, or DELETE).
 Requests on stream IDs less than or equal to the stream ID in the
 GOAWAY frame might have been processed; their status cannot be known
 until they are completed successfully, reset individually, or the
 connection terminates.

 Servers SHOULD send a GOAWAY frame when the closing of a connection
 is known in advance, even if the advance notice is small, so that the
 remote peer can know whether a stream has been partially processed or
 not. For example, if an HTTP client sends a POST at the same time
 that a server closes a QUIC connection, the client cannot know if the
 server started to process that POST request if the server does not
 send a GOAWAY frame to indicate what streams it might have acted on.

 For unexpected closures caused by error conditions, a QUIC
 CONNECTION_CLOSE frame MUST be used. However, a GOAWAY MAY be sent
 first to provide additional detail to clients. If a connection
 terminates without a GOAWAY frame, the last stream identifier is
 effectively the highest possible stream identifier (as determined by
 QUIC's MAX_STREAM_ID).

 An endpoint MAY send multiple GOAWAY frames if circumstances change.
 For instance, an endpoint that sends GOAWAY without an error code
 during graceful shutdown could subsequently encounter an error
 condition. The last stream identifier from the last GOAWAY frame
 received indicates which streams could have been acted upon.
 Endpoints MUST NOT increase the value they send in the last stream
 identifier, since the peers might already have retried unprocessed
 requests on another connection.

 A client that is unable to retry requests loses all requests that are
 in flight when the server closes the connection. A server that is
 attempting to gracefully shut down a connection SHOULD send an
 initial GOAWAY frame with the last stream identifier set to the
 current value of QUIC's MAX_STREAM_ID and SHOULD NOT increase the
 MAX_STREAM_ID thereafter. This signals to the client that a shutdown

Bishop Expires April 16, 2018 [Page 19]

Internet-Draft HTTP over QUIC October 2017

 is imminent and that initiating further requests is prohibited.
 After allowing time for any in-flight requests (at least one round-
 trip time), the server MAY send another GOAWAY frame with an updated
 last stream identifier. This ensures that a connection can be
 cleanly shut down without losing requests.

5.2.8. MAX_PUSH_ID

 The MAX_PUSH_ID frame (type=0xD) is used by clients to control the
 number of server pushes that the server can initiate. This sets the
 maximum value for a Push ID that the server can use in a PUSH_PROMISE
 frame. Consequently, this also limits the number of push streams
 that the server can initiate in addition to the limit set by the QUIC
 MAX_STREAM_ID frame.

 The MAX_PUSH_ID frame is always sent on the control stream. Receipt
 of a MAX_PUSH_ID frame on any other stream MUST be treated as a
 connection error of type HTTP_WRONG_STREAM.

 A server MUST NOT send a MAX_PUSH_ID frame. A client MUST treat the
 receipt of a MAX_PUSH_ID frame as a connection error of type
 HTTP_MALFORMED_MAX_PUSH_ID.

 The maximum Push ID is unset when a connection is created, meaning
 that a server cannot push until it receives a MAX_PUSH_ID frame. A
 client that wishes to manage the number of promised server pushes can
 increase the maximum Push ID by sending a MAX_PUSH_ID frame as the
 server fulfills or cancels server pushes.

 The MAX_PUSH_ID frame has no defined flags.

 The MAX_PUSH_ID frame carries a 32-bit Push ID that identifies the
 maximum value for a Push ID that the server can use (see

Section 5.2.6). A MAX_PUSH_ID frame cannot reduce the maximum Push
 ID; receipt of a MAX_PUSH_ID that contains a smaller value than
 previously received MUST be treated as a connection error of type
 HTTP_MALFORMED_MAX_PUSH_ID.

 A server MUST treat a MAX_PUSH_ID frame payload that is other than 4
 octets in length as a connection error of type
 HTTP_MALFORMED_MAX_PUSH_ID.

6. Connection Management

 QUIC connections are persistent. All of the considerations in
Section 9.1 of [RFC7540] apply to the management of QUIC connections.

https://datatracker.ietf.org/doc/html/rfc7540#section-9.1

Bishop Expires April 16, 2018 [Page 20]

Internet-Draft HTTP over QUIC October 2017

 HTTP clients are expected to use QUIC PING frames to keep connections
 open. Servers SHOULD NOT use PING frames to keep a connection open.
 A client SHOULD NOT use PING frames for this purpose unless there are
 responses outstanding for requests or server pushes. If the client
 is not expecting a response from the server, allowing an idle
 connection to time out (based on the idle_timeout transport
 parameter) is preferred over expending effort maintaining a
 connection that might not be needed. A gateway MAY use PING to
 maintain connections in anticipation of need rather than incur the
 latency cost of connection establishment to servers.

7. Error Handling

 QUIC allows the application to abruptly terminate (reset) individual
 streams or the entire connection when an error is encountered. These
 are referred to as "stream errors" or "connection errors" and are
 described in more detail in [QUIC-TRANSPORT].

 This section describes HTTP-specific error codes which can be used to
 express the cause of a connection or stream error.

7.1. HTTP/QUIC Error Codes

 The following error codes are defined for use in QUIC RST_STREAM,
 STOP_SENDING, and CONNECTION_CLOSE frames when using HTTP/QUIC.

 STOPPING (0x00): This value is reserved by the transport to be used
 in response to QUIC STOP_SENDING frames.

 HTTP_NO_ERROR (0x01): No error. This is used when the connection or
 stream needs to be closed, but there is no error to signal.

 HTTP_PUSH_REFUSED (0x02): The server has attempted to push content
 which the client will not accept on this connection.

 HTTP_INTERNAL_ERROR (0x03): An internal error has occurred in the
 HTTP stack.

 HTTP_PUSH_ALREADY_IN_CACHE (0x04): The server has attempted to push
 content which the client has cached.

 HTTP_REQUEST_CANCELLED (0x05): The client no longer needs the
 requested data.

 HTTP_HPACK_DECOMPRESSION_FAILED (0x06): HPACK failed to decompress a
 frame and cannot continue.

Bishop Expires April 16, 2018 [Page 21]

Internet-Draft HTTP over QUIC October 2017

 HTTP_CONNECT_ERROR (0x07): The connection established in response to
 a CONNECT request was reset or abnormally closed.

 HTTP_EXCESSIVE_LOAD (0x08): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 HTTP_VERSION_FALLBACK (0x09): The requested operation cannot be
 served over HTTP/QUIC. The peer should retry over HTTP/2.

 HTTP_MALFORMED_HEADERS (0x0A): A HEADERS frame has been received
 with an invalid format.

 HTTP_MALFORMED_PRIORITY (0x0B): A PRIORITY frame has been received
 with an invalid format.

 HTTP_MALFORMED_SETTINGS (0x0C): A SETTINGS frame has been received
 with an invalid format.

 HTTP_MALFORMED_PUSH_PROMISE (0x0D): A PUSH_PROMISE frame has been
 received with an invalid format.

 HTTP_MALFORMED_DATA (0x0E): A DATA frame has been received with an
 invalid format.

 HTTP_INTERRUPTED_HEADERS (0x0F): A HEADERS frame without the End
 Header Block flag was followed by a frame other than HEADERS.

 HTTP_WRONG_STREAM (0x10): A frame was received on stream where it is
 not permitted.

 HTTP_MULTIPLE_SETTINGS (0x11): More than one SETTINGS frame was
 received.

 HTTP_MALFORMED_PUSH (0x12): A push stream header was malformed or
 included an invalid Push ID.

 HTTP_MALFORMED_MAX_PUSH_ID (0x13): A MAX_PUSH_ID frame has been
 received with an invalid format.

8. Considerations for Transitioning from HTTP/2

 HTTP/QUIC is strongly informed by HTTP/2, and bears many
 similarities. This section describes the approach taken to design
 HTTP/QUIC, points out important differences from HTTP/2, and
 describes how to map HTTP/2 extensions into HTTP/QUIC.

 HTTP/QUIC begins from the premise that HTTP/2 code reuse is a useful
 feature, but not a hard requirement. HTTP/QUIC departs from HTTP/2

Bishop Expires April 16, 2018 [Page 22]

Internet-Draft HTTP over QUIC October 2017

 primarily where necessary to accommodate the differences in behavior
 between QUIC and TCP (lack of ordering, support for streams). We
 intend to avoid gratuitous changes which make it difficult or
 impossible to build extensions with the same semantics applicable to
 both protocols at once.

 These departures are noted in this section.

8.1. HTTP Frame Types

 Many framing concepts from HTTP/2 can be elided away on QUIC, because
 the transport deals with them. Because frames are already on a
 stream, they can omit the stream number. Because frames do not block
 multiplexing (QUIC's multiplexing occurs below this layer), the
 support for variable-maximum-length packets can be removed. Because
 stream termination is handled by QUIC, an END_STREAM flag is not
 required.

 Frame payloads are largely drawn from [RFC7540]. However, QUIC
 includes many features (e.g. flow control) which are also present in
 HTTP/2. In these cases, the HTTP mapping does not re-implement them.
 As a result, several HTTP/2 frame types are not required in HTTP/
 QUIC. Where an HTTP/2-defined frame is no longer used, the frame ID
 has been reserved in order to maximize portability between HTTP/2 and
 HTTP/QUIC implementations. However, even equivalent frames between
 the two mappings are not identical.

 Many of the differences arise from the fact that HTTP/2 provides an
 absolute ordering between frames across all streams, while QUIC
 provides this guarantee on each stream only. As a result, if a frame
 type makes assumptions that frames from different streams will still
 be received in the order sent, HTTP/QUIC will break them.

 For example, implicit in the HTTP/2 prioritization scheme is the
 notion of in-order delivery of priority changes (i.e., dependency
 tree mutations): since operations on the dependency tree such as
 reparenting a subtree are not commutative, both sender and receiver
 must apply them in the same order to ensure that both sides have a
 consistent view of the stream dependency tree. HTTP/2 specifies
 priority assignments in PRIORITY frames and (optionally) in HEADERS
 frames. To achieve in-order delivery of priority changes in HTTP/
 QUIC, PRIORITY frames are sent on the control stream and the PRIORITY
 section is removed from the HEADERS frame.

 Other than this issue, frame type HTTP/2 extensions are typically
 portable to QUIC simply by replacing Stream 0 in HTTP/2 with Stream 1
 in HTTP/QUIC. HTTP/QUIC extensions will not assume ordering, but

https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires April 16, 2018 [Page 23]

Internet-Draft HTTP over QUIC October 2017

 would not be harmed by ordering, and would be portable to HTTP/2 in
 the same manner.

 Below is a listing of how each HTTP/2 frame type is mapped:

 DATA (0x0): Padding is not defined in HTTP/QUIC frames. See
Section 5.2.1.

 HEADERS (0x1): As described above, the PRIORITY region of HEADERS is
 not supported. A separate PRIORITY frame MUST be used. Padding
 is not defined in HTTP/QUIC frames. See Section 5.2.2.

 PRIORITY (0x2): As described above, the PRIORITY frame is sent on
 the control stream. See Section 5.2.3.

 RST_STREAM (0x3): RST_STREAM frames do not exist, since QUIC
 provides stream lifecycle management. The same code point is used
 for the CANCEL_PUSH frame (Section 5.2.4).

 SETTINGS (0x4): SETTINGS frames are sent only at the beginning of
 the connection. See Section 5.2.5 and Section 8.2.

 PUSH_PROMISE (0x5): The PUSH_PROMISE does not reference a stream;
 instead the push stream references the PUSH_PROMISE frame using a
 Push ID. See Section 5.2.6.

 PING (0x6): PING frames do not exist, since QUIC provides equivalent
 functionality.

 GOAWAY (0x7): GOAWAY is sent only from server to client and does not
 contain an error code. See Section 5.2.7.

 WINDOW_UPDATE (0x8): WINDOW_UPDATE frames do not exist, since QUIC
 provides flow control.

 CONTINUATION (0x9): CONTINUATION frames do not exist; instead,
 larger HEADERS/PUSH_PROMISE frames than HTTP/2 are permitted, and
 HEADERS frames can be used in series.

 Frame types defined by extensions to HTTP/2 need to be separately
 registered for HTTP/QUIC if still applicable. The IDs of frames
 defined in [RFC7540] have been reserved for simplicity. See

Section 10.3.

Bishop Expires April 16, 2018 [Page 24]

https://datatracker.ietf.org/doc/html/rfc7540

Internet-Draft HTTP over QUIC October 2017

8.2. HTTP/2 SETTINGS Parameters

 An important difference from HTTP/2 is that settings are sent once,
 at the beginning of the connection, and thereafter cannot change.
 This eliminates many corner cases around synchronization of changes.

 Some transport-level options that HTTP/2 specifies via the SETTINGS
 frame are superseded by QUIC transport parameters in HTTP/QUIC. The
 HTTP-level options that are retained in HTTP/QUIC have the same value
 as in HTTP/2.

 Below is a listing of how each HTTP/2 SETTINGS parameter is mapped:

 SETTINGS_HEADER_TABLE_SIZE: See Section 5.2.5.2.

 SETTINGS_ENABLE_PUSH: This is removed in favor of the MAX_PUSH_ID
 which provides a more granular control over server push.

 SETTINGS_MAX_CONCURRENT_STREAMS: QUIC controls the largest open
 stream ID as part of its flow control logic. Specifying
 SETTINGS_MAX_CONCURRENT_STREAMS in the SETTINGS frame is an error.

 SETTINGS_INITIAL_WINDOW_SIZE: QUIC requires both stream and
 connection flow control window sizes to be specified in the
 initial transport handshake. Specifying
 SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame is an error.

 SETTINGS_MAX_FRAME_SIZE: This setting has no equivalent in HTTP/
 QUIC. Specifying it in the SETTINGS frame is an error.

 SETTINGS_MAX_HEADER_LIST_SIZE: See Section 5.2.5.2.

 Settings need to be defined separately for HTTP/2 and HTTP/QUIC. The
 IDs of settings defined in [RFC7540] have been reserved for
 simplicity. See Section 10.4.

8.3. HTTP/2 Error Codes

 QUIC has the same concepts of "stream" and "connection" errors that
 HTTP/2 provides. However, because the error code space is shared
 between multiple components, there is no direct portability of HTTP/2
 error codes.

 The HTTP/2 error codes defined in Section 7 of [RFC7540] map to the
 HTTP over QUIC error codes as follows:

 NO_ERROR (0x0): HTTP_NO_ERROR in Section 7.1.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540#section-7

Bishop Expires April 16, 2018 [Page 25]

Internet-Draft HTTP over QUIC October 2017

 PROTOCOL_ERROR (0x1): No single mapping. See new HTTP_MALFORMED_*
 error codes defined in Section 7.1.

 INTERNAL_ERROR (0x2): HTTP_INTERNAL_ERROR in Section 7.1.

 FLOW_CONTROL_ERROR (0x3): Not applicable, since QUIC handles flow
 control. Would provoke a QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA
 from the QUIC layer.

 SETTINGS_TIMEOUT (0x4): Not applicable, since no acknowledgement of
 SETTINGS is defined.

 STREAM_CLOSED (0x5): Not applicable, since QUIC handles stream
 management. Would provoke a QUIC_STREAM_DATA_AFTER_TERMINATION
 from the QUIC layer.

 FRAME_SIZE_ERROR (0x6) No single mapping. See new error codes
 defined in Section 7.1.

 REFUSED_STREAM (0x7): Not applicable, since QUIC handles stream
 management. Would provoke a QUIC_TOO_MANY_OPEN_STREAMS from the
 QUIC layer.

 CANCEL (0x8): HTTP_REQUEST_CANCELLED in Section 7.1.

 COMPRESSION_ERROR (0x9): HTTP_HPACK_DECOMPRESSION_FAILED in
Section 7.1.

 CONNECT_ERROR (0xa): HTTP_CONNECT_ERROR in Section 7.1.

 ENHANCE_YOUR_CALM (0xb): HTTP_EXCESSIVE_LOAD in Section 7.1.

 INADEQUATE_SECURITY (0xc): Not applicable, since QUIC is assumed to
 provide sufficient security on all connections.

 HTTP_1_1_REQUIRED (0xd): HTTP_VERSION_FALLBACK in Section 7.1.

 Error codes need to be defined for HTTP/2 and HTTP/QUIC separately.
 See Section 10.5.

9. Security Considerations

 The security considerations of HTTP over QUIC should be comparable to
 those of HTTP/2.

 The modified SETTINGS format contains nested length elements, which
 could pose a security risk to an uncautious implementer. A SETTINGS

Bishop Expires April 16, 2018 [Page 26]

Internet-Draft HTTP over QUIC October 2017

 frame parser MUST ensure that the length of the frame exactly matches
 the length of the settings it contains.

10. IANA Considerations

10.1. Registration of HTTP/QUIC Identification String

 This document creates a new registration for the identification of
 HTTP/QUIC in the "Application Layer Protocol Negotiation (ALPN)
 Protocol IDs" registry established in [RFC7301].

 The "hq" string identifies HTTP/QUIC:

 Protocol: HTTP over QUIC

 Identification Sequence: 0x68 0x71 ("hq")

 Specification: This document

10.2. Registration of QUIC Version Hint Alt-Svc Parameter

 This document creates a new registration for version-negotiation
 hints in the "Hypertext Transfer Protocol (HTTP) Alt-Svc Parameter"
 registry established in [RFC7838].

 Parameter: "quic"

 Specification: This document, Section 2.1

10.3. Frame Types

 This document establishes a registry for HTTP/QUIC frame type codes.
 The "HTTP/QUIC Frame Type" registry manages an 8-bit space. The
 "HTTP/QUIC Frame Type" registry operates under either of the "IETF
 Review" or "IESG Approval" policies [RFC8126] for values between 0x00
 and 0xef, with values between 0xf0 and 0xff being reserved for
 Experimental Use.

 While this registry is separate from the "HTTP/2 Frame Type" registry
 defined in [RFC7540], it is preferable that the assignments parallel
 each other. If an entry is present in only one registry, every
 effort SHOULD be made to avoid assigning the corresponding value to
 an unrelated operation.

 New entries in this registry require the following information:

 Frame Type: A name or label for the frame type.

Bishop Expires April 16, 2018 [Page 27]

https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7540

Internet-Draft HTTP over QUIC October 2017

 Code: The 8-bit code assigned to the frame type.

 Specification: A reference to a specification that includes a
 description of the frame layout, its semantics, and flags that the
 frame type uses, including any parts of the frame that are
 conditionally present based on the value of flags.

 The entries in the following table are registered by this document.

 +--------------+------+---------------+
 | Frame Type | Code | Specification |
 +--------------+------+---------------+
 | DATA | 0x0 | Section 5.2.1 |
 | | | |
 | HEADERS | 0x1 | Section 5.2.2 |
 | | | |
 | PRIORITY | 0x2 | Section 5.2.3 |
 | | | |
 | CANCEL_PUSH | 0x3 | Section 5.2.4 |
 | | | |
 | SETTINGS | 0x4 | Section 5.2.5 |
 | | | |
 | PUSH_PROMISE | 0x5 | Section 5.2.6 |
 | | | |
 | Reserved | 0x6 | N/A |
 | | | |
 | GOAWAY | 0x7 | Section 5.2.7 |
 | | | |
 | Reserved | 0x8 | N/A |
 | | | |
 | Reserved | 0x9 | N/A |
 | | | |
 | MAX_PUSH_ID | 0xD | Section 5.2.8 |
 +--------------+------+---------------+

10.4. Settings Parameters

 This document establishes a registry for HTTP/QUIC settings. The
 "HTTP/QUIC Settings" registry manages a 16-bit space. The "HTTP/QUIC
 Settings" registry operates under the "Expert Review" policy
 [RFC8126] for values in the range from 0x0000 to 0xefff, with values
 between and 0xf000 and 0xffff being reserved for Experimental Use.
 The designated experts are the same as those for the "HTTP/2
 Settings" registry defined in [RFC7540].

 While this registry is separate from the "HTTP/2 Settings" registry
 defined in [RFC7540], it is preferable that the assignments parallel
 each other. If an entry is present in only one registry, every

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540

Bishop Expires April 16, 2018 [Page 28]

Internet-Draft HTTP over QUIC October 2017

 effort SHOULD be made to avoid assigning the corresponding value to
 an unrelated operation.

 New registrations are advised to provide the following information:

 Name: A symbolic name for the setting. Specifying a setting name is
 optional.

 Code: The 16-bit code assigned to the setting.

 Specification: An optional reference to a specification that
 describes the use of the setting.

 The entries in the following table are registered by this document.

 +----------------------+------+-----------------+
 | Setting Name | Code | Specification |
 +----------------------+------+-----------------+
 | HEADER_TABLE_SIZE | 0x1 | Section 5.2.5.2 |
 | | | |
 | Reserved | 0x2 | N/A |
 | | | |
 | Reserved | 0x3 | N/A |
 | | | |
 | Reserved | 0x4 | N/A |
 | | | |
 | Reserved | 0x5 | N/A |
 | | | |
 | MAX_HEADER_LIST_SIZE | 0x6 | Section 5.2.5.2 |
 +----------------------+------+-----------------+

10.5. Error Codes

 This document establishes a registry for HTTP/QUIC error codes. The
 "HTTP/QUIC Error Code" registry manages a 16-bit space. The "HTTP/
 QUIC Error Code" registry operates under the "Expert Review" policy
 [RFC8126].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Name: A name for the error code. Specifying an error code name is
 optional.

https://datatracker.ietf.org/doc/html/rfc8126

Bishop Expires April 16, 2018 [Page 29]

Internet-Draft HTTP over QUIC October 2017

 Code: The 16-bit error code value.

 Description: A brief description of the error code semantics, longer
 if no detailed specification is provided.

 Specification: An optional reference for a specification that
 defines the error code.

 The entries in the following table are registered by this document.

 +-----------------------------+-----+-------------+-----------------+
 | Name | Cod | Description | Specification |
 | | e | | |
 +-----------------------------+-----+-------------+-----------------+
STOPPING	0x0	Reserved by	[QUIC-TRANSPORT
	0	QUIC]
HTTP_NO_ERROR	0x0	No error	Section 7.1
	1		
HTTP_PUSH_REFUSED	0x0	Client	Section 7.1
	2	refused	
		pushed	
		content	
HTTP_INTERNAL_ERROR	0x0	Internal	Section 7.1
	3	error	
HTTP_PUSH_ALREADY_IN_CACHE	0x0	Pushed	Section 7.1
	4	content	
		already	
		cached	
HTTP_REQUEST_CANCELLED	0x0	Data no	Section 7.1
	5	longer	
		needed	
HTTP_HPACK_DECOMPRESSION_FA	0x0	HPACK	Section 7.1
ILED	6	cannot	
		continue	
HTTP_CONNECT_ERROR	0x0	TCP reset	Section 7.1
	7	or error on	
		CONNECT	
		request	
HTTP_EXCESSIVE_LOAD	0x0	Peer	Section 7.1
	8	generating	

Bishop Expires April 16, 2018 [Page 30]

Internet-Draft HTTP over QUIC October 2017

		excessive	
		load	
HTTP_VERSION_FALLBACK	0x0	Retry over	Section 7.1
	9	HTTP/2	
HTTP_MALFORMED_HEADERS	0x0	Invalid	Section 7.1
	A	HEADERS	
		frame	
HTTP_MALFORMED_PRIORITY	0x0	Invalid	Section 7.1
	B	PRIORITY	
		frame	
HTTP_MALFORMED_SETTINGS	0x0	Invalid	Section 7.1
	C	SETTINGS	
		frame	
HTTP_MALFORMED_PUSH_PROMISE	0x0	Invalid PUS	Section 7.1
	D	H_PROMISE	
		frame	
HTTP_MALFORMED_DATA	0x0	Invalid	Section 7.1
	E	DATA frame	
HTTP_INTERRUPTED_HEADERS	0x0	Incomplete	Section 7.1
	F	HEADERS	
		block	
HTTP_WRONG_STREAM	0x1	A frame was	Section 7.1
	0	sent on the	
		wrong	
		stream	
HTTP_MULTIPLE_SETTINGS	0x1	Multiple	Section 7.1
	1	SETTINGS	
		frames	
HTTP_MALFORMED_PUSH	0x1	Invalid	Section 7.1
	2	push stream	
		header	
HTTP_MALFORMED_MAX_PUSH_ID	0x1	Invalid	Section 7.1
	3	MAX_PUSH_ID	
		frame	
 +-----------------------------+-----+-------------+-----------------+

Bishop Expires April 16, 2018 [Page 31]

Internet-Draft HTTP over QUIC October 2017

11. References

11.1. Normative References

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-07 (work in progress), October 2017.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-07
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838

Bishop Expires April 16, 2018 [Page 32]

Internet-Draft HTTP over QUIC October 2017

11.2. Informative References

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

11.3. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/http

Appendix A. Contributors

 The original authors of this specification were Robbie Shade and Mike
 Warres.

Appendix B. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-ietf-quic-http-06

 Nothing yet.

B.2. Since draft-ietf-quic-http-05

 o Made push ID sequential, add MAX_PUSH_ID, remove
 SETTINGS_ENABLE_PUSH (#709)

 o Guidance about keep-alive and QUIC PINGs (#729)

 o Expanded text on GOAWAY and cancellation (#757)

B.3. Since draft-ietf-quic-http-04

 o Cite RFC 5234 (#404)

 o Return to a single stream per request (#245,#557)

Bishop Expires April 16, 2018 [Page 33]

https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/http
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-04
https://datatracker.ietf.org/doc/html/rfc5234

Internet-Draft HTTP over QUIC October 2017

 o Use separate frame type and settings registries from HTTP/2 (#81)

 o SETTINGS_ENABLE_PUSH instead of SETTINGS_DISABLE_PUSH (#477)

 o Restored GOAWAY (#696)

 o Identify server push using Push ID rather than a stream ID
 (#702,#281)

 o DATA frames cannot be empty (#700)

B.4. Since draft-ietf-quic-http-03

 None.

B.5. Since draft-ietf-quic-http-02

 o Track changes in transport draft

B.6. Since draft-ietf-quic-http-01

 o SETTINGS changes (#181):

 * SETTINGS can be sent only once at the start of a connection; no
 changes thereafter

 * SETTINGS_ACK removed

 * Settings can only occur in the SETTINGS frame a single time

 * Boolean format updated

 o Alt-Svc parameter changed from "v" to "quic"; format updated
 (#229)

 o Closing the connection control stream or any message control
 stream is a fatal error (#176)

 o HPACK Sequence counter can wrap (#173)

 o 0-RTT guidance added

 o Guide to differences from HTTP/2 and porting HTTP/2 extensions
 added (#127,#242)

Bishop Expires April 16, 2018 [Page 34]

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-01

Internet-Draft HTTP over QUIC October 2017

B.7. Since draft-ietf-quic-http-00

 o Changed "HTTP/2-over-QUIC" to "HTTP/QUIC" throughout (#11,#29)

 o Changed from using HTTP/2 framing within Stream 3 to new framing
 format and two-stream-per-request model (#71,#72,#73)

 o Adopted SETTINGS format from draft-bishop-httpbis-extended-
settings-01

 o Reworked SETTINGS_ACK to account for indeterminate inter-stream
 order (#75)

 o Described CONNECT pseudo-method (#95)

 o Updated ALPN token and Alt-Svc guidance (#13,#87)

 o Application-layer-defined error codes (#19,#74)

B.8. Since draft-shade-quic-http2-mapping-00

 o Adopted as base for draft-ietf-quic-http

 o Updated authors/editors list

Author's Address

 Mike Bishop (editor)
 Microsoft

 Email: Michael.Bishop@microsoft.com

Bishop Expires April 16, 2018 [Page 35]

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-00
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-01
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-extended-settings-01
https://datatracker.ietf.org/doc/html/draft-shade-quic-http2-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http

