
NTP Working Group D. Sibold
Internet-Draft PTB
Intended status: Standards Track S. Roettger
Expires: August 28, 2016 Google Inc.
 K. Teichel
 PTB
 February 25, 2016

Network Time Security
draft-ietf-ntp-network-time-security-13

Abstract

 This document describes Network Time Security (NTS), a collection of
 measures that enable secure time synchronization with time servers
 using protocols like the Network Time Protocol (NTP) or the Precision
 Time Protocol (PTP). Its design considers the special requirements
 of precise timekeeping which are described in Security Requirements
 of Time Protocols in Packet Switched Networks [RFC7384].

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 28, 2016.

Sibold, et al. Expires August 28, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft NTS February 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
2.1. Terms and Abbreviations 4
2.2. Common Terminology for PTP and NTP 4

3. Security Threats . 5
4. Objectives . 5
5. NTS Overview . 6
6. Protocol Messages . 7
6.1. Unicast Time Synchronisation Messages 7

 6.1.1. Preconditions for the Unicast Time Synchronization
 Exchange . 7
 6.1.2. Goals of the Unicast Time Synchronization Exchange . 8

6.1.3. Message Type: "time_request" 8
6.1.4. Message Type: "time_response" 8

 6.1.5. Procedure Overview of the Unicast Time
 Synchronization Exchange 9

6.2. Broadcast Time Synchronization Exchange 10
 6.2.1. Preconditions for the Broadcast Time Synchronization
 Exchange . 10
 6.2.2. Goals of the Broadcast Time Synchronization Exchange 11

6.2.3. Message Type: "server_broad" 11
 6.2.4. Procedure Overview of Broadcast Time Synchronization
 Exchange . 12

6.3. Broadcast Keycheck 13
6.3.1. Preconditions for the Broadcast Keycheck Exchange . . 13
6.3.2. Goals of the Broadcast Keycheck Exchange 14
6.3.3. Message Type: "client_keycheck" 14
6.3.4. Message Type: "server_keycheck" 14

 6.3.5. Procedure Overview of the Broadcast Keycheck Exchange 15
7. Server Seed, Hash Algorithms and Generating MACs 16
7.1. Server Seed . 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Sibold, et al. Expires August 28, 2016 [Page 2]

Internet-Draft NTS February 2016

7.2. Hash Algorithms . 16
7.3. MAC Calculation . 17

8. IANA Considerations . 17
9. Security Considerations 17
9.1. Privacy . 17
9.2. Initial Verification of the Server Certificates 18
9.3. Revocation of Server Certificates 18
9.4. Mitigating Denial-of-Service for broadcast packets . . . 18
9.5. Delay Attack . 19
9.6. Random Number Generation 20

10. Acknowledgements . 20
11. References . 20
11.1. Normative References 20
11.2. Informative References 21

Appendix A. (informative) TICTOC Security Requirements 22
Appendix B. (normative) Inherent Association Protocol Messages . 23
B.1. Overview of NTS with Inherent Association Protocol . . . 23
B.2. Access Message Exchange 24
B.2.1. Goals of the Access Message Exchange 24
B.2.2. Message Type: "client_access" 24
B.2.3. Message Type: "server_access" 24
B.2.4. Procedure Overview of the Access Exchange 25

B.3. Association Message Exchange 25
B.3.1. Goals of the Association Exchange 25
B.3.2. Message Type: "client_assoc" 26
B.3.3. Message Type: "server_assoc" 26
B.3.4. Procedure Overview of the Association Exchange . . . 27

B.4. Cookie Message Exchange 28
B.4.1. Goals of the Cookie Exchange 28
B.4.2. Message Type: "client_cook" 29
B.4.3. Message Type: "server_cook" 29
B.4.4. Procedure Overview of the Cookie Exchange 30
B.4.5. Broadcast Parameter Messages 31

Appendix C. (normative) Using TESLA for Broadcast-Type Messages 33
C.1. Server Preparation 33
C.2. Client Preparation 35
C.3. Sending Authenticated Broadcast Packets 36
C.4. Authentication of Received Packets 36

Appendix D. (informative) Dependencies 38
 Authors' Addresses . 40

1. Introduction

 Time synchronization protocols are increasingly utilized to
 synchronize clocks in networked infrastructures. Successful attacks
 against the time synchronization protocol can seriously degrade the
 reliable performance of such infrastructures. Therefore, time
 synchronization protocols have to be secured if they are applied in

Sibold, et al. Expires August 28, 2016 [Page 3]

Internet-Draft NTS February 2016

 environments that are prone to malicious attacks. This can be
 accomplished either by utilization of external security protocols,
 like IPsec or TLS, or by intrinsic security measures of the time
 synchronization protocol.

 The two most popular time synchronization protocols, the Network Time
 Protocol (NTP) [RFC5905] and the Precision Time Protocol (PTP)
 [IEEE1588], currently do not provide adequate intrinsic security
 precautions. This document specifies generic security measures which
 enable these and possibly other protocols to verify the authenticity
 of the time server/master and the integrity of the time
 synchronization protocol packets. The utilization of these measures
 for a given specific time synchronization protocol has to be
 described in a separate document.

 [RFC7384] specifies that a security mechanism for timekeeping must be
 designed in such a way that it does not degrade the quality of the
 time transfer. This implies that for time keeping the increase in
 bandwidth and message latency caused by the security measures should
 be small. Also, NTP as well as PTP work via UDP and connections are
 stateless on the server/master side. Therefore, all security
 measures in this document are designed in such a way that they add
 little demand for bandwidth, that the necessary calculations can be
 executed in a fast manner, and that the measures do not require a
 server/master to keep state of a connection.

2. Terminology

2.1. Terms and Abbreviations

 MITM Man In The Middle

 NTS Network Time Security

 TESLA Timed Efficient Stream Loss-tolerant Authentication

 MAC Message Authentication Code

 HMAC Keyed-Hash Message Authentication Code

2.2. Common Terminology for PTP and NTP

 This document refers to different time synchronization protocols, in
 particular to both the PTP and the NTP. Throughout the document the
 term "server" applies to both a PTP master and an NTP server.
 Accordingly, the term "client" applies to both a PTP slave and an NTP
 client.

https://datatracker.ietf.org/doc/html/rfc5905

Sibold, et al. Expires August 28, 2016 [Page 4]

Internet-Draft NTS February 2016

3. Security Threats

 The document "Security Requirements of Time Protocols in Packet
 Switched Networks" [RFC7384] contains a profound analysis of security
 threats and requirements for time synchronization protocols.

4. Objectives

 The objectives of the NTS specification are as follows:

 o Authenticity: NTS enables the client to authenticate its time
 server(s).

 o Integrity: NTS protects the integrity of time synchronization
 protocol packets via a message authentication code (MAC).

 o Confidentiality: NTS does not provide confidentiality protection
 of the time synchronization packets.

 o Authorization: NTS enables the client to verify its time server's
 authorization. NTS optionally enables the server to verify the
 client's authorization as well.

 o Request-Response-Consistency: NTS enables a client to match an
 incoming response to a request it has sent. NTS also enables the
 client to deduce from the response whether its request to the
 server has arrived without alteration.

 o Applicability to Protocols: NTS can be used to secure different
 time synchronization protocols, specifically at least NTP and PTP.

 o Integration with Protocols: A client or server running an NTS-
 secured version of a time protocol does not negatively affect
 other participants who are running unsecured versions of that
 protocol.

 o Server-Side Statelessness: All security measures of NTS work
 without creating the necessity for a server to keep state of a
 connection.

 o Prevention of Amplification Attacks: All communication introduced
 by NTS offers protection against abuse for amplification denial-
 of-service attacks.

Sibold, et al. Expires August 28, 2016 [Page 5]

https://datatracker.ietf.org/doc/html/rfc7384

Internet-Draft NTS February 2016

5. NTS Overview

 NTS initially verifies the authenticity of the time server and
 exchanges a symmetric key, the so-called cookie, as well as a key
 input value (KIV). The KIV can be opaque for the client. After the
 cookie and the KIV are exchanged, the client then uses them to
 protect the authenticity and the integrity of subsequent unicast-type
 time synchronization packets. In order to do this, a Message
 Authentication Code (MAC) is attached to each time synchronization
 packet. The calculation of the MAC includes the whole time
 synchronization packet and the cookie which is shared between client
 and server.

 The cookie is calculated according to:

 cookie = MSB_ (HMAC(server seed, KIV)),

 with the server seed as the key, where KIV is the client's key input
 value, and where the application of the function MSB_ returns only
 the b most significant bits. The server seed is a random value of
 bit length b that the server possesses, which has to remain secret.
 The cookie deterministically depends on KIV as long as the server
 seed stays the same. The server seed has to be refreshed
 periodically in order to provide key freshness as required in
 [RFC7384]. See Section 7 for details on seed refreshing.

 Since the server does not keep a state of the client, it has to
 recalculate the cookie each time it receives a unicast time
 synchronization request from the client. To this end, the client has
 to attach its KIV to each request (see Section 6.1).

 Note: The communication of the KIV and the cookie can be performed
 between client and server directly, or via a third party key
 distribution entity.

 For broadcast-type messages, authenticity and integrity of the time
 synchronization packets are also ensured by a MAC, which is attached
 to the time synchronization packet by the sender. Verification of
 the broadcast-type packets' authenticity is based on the TESLA
 protocol, in particular on its "not re-using keys" scheme, see

Section 3.7.2 of [RFC4082]. TESLA uses a one-way chain of keys,
 where each key is the output of a one-way function applied to the
 previous key in the chain. The server securely shares the last
 element of the chain with all clients. The server splits time into
 intervals of uniform duration and assigns each key to an interval in
 reverse order. At each time interval, the server sends a broadcast
 packet appended by a MAC, calculated using the corresponding key, and
 the key of the previous disclosure interval. The client verifies the

https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc4082#section-3.7.2

Sibold, et al. Expires August 28, 2016 [Page 6]

Internet-Draft NTS February 2016

 MAC by buffering the packet until disclosure of the key in its
 associated disclosure interval occurs. In order to be able to verify
 the timeliness of the packets, the client has to be loosely time
 synchronized with the server. This has to be accomplished before
 broadcast associations can be used. For checking timeliness of
 packets, NTS uses another, more rigorous check in addition to just
 the clock lookup used in the TESLA protocol. For a more detailed
 description of how NTS employs and customizes TESLA, see Appendix C.

6. Protocol Messages

 This section describes the types of messages needed for secure time
 synchronization with NTS.

 For some guidance on how these message types can be realized in
 practice, and integrated into the communication flow of existing time
 synchronization protocols, see [I-D.ietf-ntp-cms-for-nts-message], a
 companion document for NTS. Said document describes ASN.1 encodings
 for those message parts that have to be added to a time
 synchronization protocol for security reasons.

6.1. Unicast Time Synchronisation Messages

 In this message exchange, the usual time synchronization process is
 executed, with the addition of integrity protection for all messages
 that the server sends. This message exchange can be repeatedly
 performed as often as the client desires and as long as the integrity
 of the server's time responses is verified successfully.

6.1.1. Preconditions for the Unicast Time Synchronization Exchange

 Before this message exchange is available, there are some
 requirements that the client and server need to meet:

 o They MUST negotiate the hash algorithm for the MAC used in the
 time synchronization messages. Authenticity and integrity of the
 communication MUST be ensured.

 o The client MUST know a key input value KIV. Authenticity and
 integrity of the communication MUST be ensured.

 o Client and server MUST exchange the cookie (which depends on the
 KIV as described in section Section 5). Authenticity,
 confidentiality and integrity of the communication MUST be
 ensured.

 One way of realizing these requirements is to use the Association and
 Cookie Message Exchanges described in Appendix B.

Sibold, et al. Expires August 28, 2016 [Page 7]

Internet-Draft NTS February 2016

6.1.2. Goals of the Unicast Time Synchronization Exchange

 The unicast time synchronization exchange:

 o exchanges time synchronization data as specified by the
 appropriate time synchronization protocol,

 o guarantees authenticity and integrity of the request to the
 server,

 o guarantees authenticity and integrity of the response to the
 client,

 o guarantees request-response-consistency to the client.

6.1.3. Message Type: "time_request"

 This message is sent by the client when it requests a time exchange.
 It contains

 o the NTS message ID "time_request",

 o the negotiated version number,

 o a nonce,

 o the negotiated hash algorithm H,

 o the client's key input value (for which the client knows the
 associated cookie),

 o optional: a MAC (generated with the cookie as key) for
 verification of all of the above data.

6.1.4. Message Type: "time_response"

 This message is sent by the server after it has received a
 time_request message. Prior to this the server MUST recalculate the
 client's cookie by using the received key input value and the
 transmitted hash algorithm. The message contains

 o the NTS message ID "time_response",

 o the version number as transmitted in time_request,

 o the server's time synchronization response data,

 o the nonce transmitted in time_request,

Sibold, et al. Expires August 28, 2016 [Page 8]

Internet-Draft NTS February 2016

 o a MAC (generated with the cookie as key) for verification of all
 of the above data.

6.1.5. Procedure Overview of the Unicast Time Synchronization Exchange

 For a unicast time synchronization exchange, the following steps are
 performed:

 1. The client sends a time_request message to the server. The
 client MUST save the included nonce and the transmit_timestamp
 (from the time synchronization data) as a correlated pair for
 later verification steps. Optionally, the client protects the
 request message with an appended MAC.

 2. Upon receipt of a time_request message, the server performs the
 following steps:

 * It re-calculates the cookie.

 * If the request message contains a MAC the server re-calculates
 the MAC and compares this value with the MAC in the received
 data.

 + If the re-calculated MAC does not match the MAC in the
 received data the server MUST stop the processing of the
 request.

 + If the re-calculated MAC matches the MAC in the received
 data the server continues to process the request.

 * The server computes the necessary time synchronization data
 and constructs a time_response message as given in

Section 6.1.4.

 3. The client awaits a reply in the form of a time_response message.
 Upon receipt, it checks:

 * that the transmitted version number matches the one negotiated
 previously,

 * that the transmitted nonce belongs to a previous time_request
 message,

 * that the transmit_timestamp in that time_request message
 matches the corresponding time stamp from the synchronization
 data received in the time_response, and

Sibold, et al. Expires August 28, 2016 [Page 9]

Internet-Draft NTS February 2016

 * that the appended MAC verifies the received synchronization
 data, version number and nonce.

 If at least one of the first three checks fails (i.e. if the
 version number does not match, if the client has never used the
 nonce transmitted in the time_response message, or if it has used
 the nonce with initial time synchronization data different from
 that in the response), then the client MUST ignore this
 time_response message. If the MAC is invalid, the client MUST do
 one of the following: abort the run or send another cookie
 request (because the cookie might have changed due to a server
 seed refresh). If both checks are successful, the client SHOULD
 continue time synchronization.

 +-----------------------+
 | o Re-generate cookie |
 | o Assemble response |
 | o Generate MAC |
 +-----------+-----------+
 |
 <-+->

 Server --->
 /| \
 time_ / \ time_
 request / \ response
 / \|
 Client --->

 <------ Unicast time ------> <- Client-side ->
 synchronization validity
 exchange checks

 Procedure for unicast time synchronization exchange.

6.2. Broadcast Time Synchronization Exchange

6.2.1. Preconditions for the Broadcast Time Synchronization Exchange

 Before this message exchange is available, there are some
 requirements that the client and server need to meet:

 o The client MUST receive all the information necessary to process
 broadcast time synchronization messages from the server. This
 includes

 * the one-way functions used for building the key chain,

Sibold, et al. Expires August 28, 2016 [Page 10]

Internet-Draft NTS February 2016

 * the last key of the key chain,

 * time interval duration,

 * the disclosure delay (number of intervals between use and
 disclosure of a key),

 * the time at which the next time interval will start, and

 * the next interval's associated index.

 o The communication of the data listed above MUST guarantee
 authenticity of the server, as well as integrity and freshness of
 the broadcast parameters to the client.

6.2.2. Goals of the Broadcast Time Synchronization Exchange

 The broadcast time synchronization exchange:

 o transmits (broadcast) time synchronization data from the server to
 the client as specified by the appropriate time synchronization
 protocol,

 o guarantees to the client that the received synchronization data
 has arrived in a timely manner as required by the TESLA protocol
 and is trustworthy enough to be stored for later checks,

 o additionally guarantees authenticity of a certain broadcast
 synchronization message in the client's storage.

6.2.3. Message Type: "server_broad"

 This message is sent by the server over the course of its broadcast
 schedule. It is part of any broadcast association. It contains

 o the NTS message ID "server_broad",

 o the version number that the server is working under,

 o time broadcast data,

 o the index that belongs to the current interval (and therefore
 identifies the current, yet undisclosed, key),

 o the disclosed key of the previous disclosure interval (current
 time interval minus disclosure delay),

Sibold, et al. Expires August 28, 2016 [Page 11]

Internet-Draft NTS February 2016

 o a MAC, calculated with the key for the current time interval,
 verifying

 * the message ID,

 * the version number, and

 * the time data.

6.2.4. Procedure Overview of Broadcast Time Synchronization Exchange

 A broadcast time synchronization message exchange consists of the
 following steps:

 1. The server follows the TESLA protocol by regularly sending
 server_broad messages as described in Section 6.2.3, adhering to
 its own disclosure schedule.

 2. The client awaits time synchronization data in the form of a
 server_broadcast message. Upon receipt, it performs the
 following checks:

 * Proof that the MAC is based on a key that is not yet disclosed
 (packet timeliness). This is achieved via a combination of
 checks. First, the disclosure schedule is used, which
 requires loose time synchronization. If this is successful,
 the client obtains a stronger guarantee via a key check
 exchange (see below). If its timeliness is verified, the
 packet will be buffered for later authentication. Otherwise,
 the client MUST discard it. Note that the time information
 included in the packet will not be used for synchronization
 until its authenticity could also be verified.

 * The client checks that it does not already know the disclosed
 key. Otherwise, the client SHOULD discard the packet to avoid
 a buffer overrun. If this check is successful, the client
 ensures that the disclosed key belongs to the one-way key
 chain by applying the one-way function until equality with a
 previous disclosed key is shown. If it is falsified, the
 client MUST discard the packet.

 * If the disclosed key is legitimate, then the client verifies
 the authenticity of any packet that it has received during the
 corresponding time interval. If authenticity of a packet is
 verified, then it is released from the buffer and its time
 information can be utilized. If the verification fails, then
 authenticity is not given. In this case, the client MUST
 request authentic time from the server by means other than

Sibold, et al. Expires August 28, 2016 [Page 12]

Internet-Draft NTS February 2016

 broadcast messages. Also, the client MUST re-initialize the
 broadcast sequence with a "client_bpar" message if the one-way
 key chain expires, which it can check via the disclosure
 schedule.

 See RFC 4082[RFC4082] for a detailed description of the packet
 verification process.

 Server ---------------------------------->
 \
 \ server_
 \ broad
 \|
 Client ---------------------------------->

 < Broadcast > <- Client-side ->
 time sync. validity and
 exchange timeliness
 checks

 Procedure for broadcast time synchronization exchange.

6.3. Broadcast Keycheck

 This message exchange is performed for an additional check of packet
 timeliness in the course of the TESLA scheme, see Appendix C.

6.3.1. Preconditions for the Broadcast Keycheck Exchange

 Before this message exchange is available, there are some
 requirements that the client and server need to meet:

 o They MUST negotiate the hash algorithm for the MAC used in the
 time synchronization messages. Authenticity and integrity of the
 communication MUST be ensured.

 o The client MUST know a key input value KIV. Authenticity and
 integrity of the communication MUST be ensured.

 o Client and server MUST exchange the cookie (which depends on the
 KIV as described in section Section 5). Authenticity,
 confidentiality and integrity of the communication MUST be
 ensured.

 These requirements conform to those for the unicast time
 synchronization exchange. Accordingly, they too can be realized via
 the Association and Cookie Message Exchanges described in Appendix B
 (Appendix B).

https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4082

Sibold, et al. Expires August 28, 2016 [Page 13]

Internet-Draft NTS February 2016

6.3.2. Goals of the Broadcast Keycheck Exchange

 The keycheck exchange:

 o guarantees to the client that the key belonging to the respective
 TESLA interval communicated in the exchange had not been disclosed
 before the client_keycheck message was sent.

 o guarantees to the client the timeliness of any broadcast packet
 secured with this key if it arrived before client_keycheck was
 sent.

6.3.3. Message Type: "client_keycheck"

 A message of this type is sent by the client in order to initiate an
 additional check of packet timeliness for the TESLA scheme. It
 contains

 o the NTS message ID "client_keycheck",

 o the NTS version number negotiated during association,

 o a nonce,

 o an interval number from the TESLA disclosure schedule,

 o the hash algorithm H negotiated during association,

 o the client's key input value KIV, and

 o optional: a MAC (generated with the cookie as key) for
 verification of all of the above data.

6.3.4. Message Type: "server_keycheck"

 A message of this type is sent by the server upon receipt of a
 client_keycheck message during the broadcast loop of the server.
 Prior to this, the server MUST recalculate the client's cookie by
 using the received key input value and the transmitted hash
 algorithm. It contains

 o the NTS message ID "server_keycheck"

 o the version number as transmitted in "client_keycheck,

 o the nonce transmitted in the client_keycheck message,

Sibold, et al. Expires August 28, 2016 [Page 14]

Internet-Draft NTS February 2016

 o the interval number transmitted in the client_keycheck message,
 and

 o a MAC (generated with the cookie as key) for verification of all
 of the above data.

6.3.5. Procedure Overview of the Broadcast Keycheck Exchange

 A broadcast keycheck message exchange consists of the following
 steps:

 1. The client sends a client_keycheck message. It MUST memorize the
 nonce and the time interval number that it sends as a correlated
 pair.

 2. Upon receipt of a client_keycheck message the server performs as
 follows: If the client_keycheck message contains a MAC the server
 re-calculates the MAC and compares this value with the MAC in the
 received data.

 * If the re-calculated MAC does not match the MAC in the
 received data the server MUST stop the processing of the
 request.

 * If the re-calculated MAC matches the MAC in the received data
 the server continues to process the request: It looks up
 whether it has already disclosed the key associated with the
 interval number transmitted in that message. If it has not
 disclosed it, it constructs and sends the appropriate
 server_keycheck message as described in Section 6.3.4. For
 more details, see also Appendix C.

 3. The client awaits a reply in the form of a server_keycheck
 message. On receipt, it performs the following checks:

 * that the transmitted version number matches the one negotiated
 previously,

 * that the transmitted nonce belongs to a previous
 client_keycheck message,

 * that the TESLA interval number in that client_keycheck message
 matches the corresponding interval number from the
 server_keycheck, and

 * that the appended MAC verifies the received data.

Sibold, et al. Expires August 28, 2016 [Page 15]

Internet-Draft NTS February 2016

 +----------------------+
 | o Assemble response |
 | o Re-generate cookie |
 | o Generate MAC |
 +-----------+----------+
 |
 <-+->
 Server --->
 \ /| \
 \ server_ client_ / \ server_
 \ broad keycheck / \ keycheck
 \| / \|
 Client --->
 <-------- Extended broadcast time ------->
 synchronization exchange

 <---- Keycheck exchange --->

 Procedure for extended broadcast time synchronization exchange.

7. Server Seed, Hash Algorithms and Generating MACs

7.1. Server Seed

 The server has to calculate a random seed which has to be kept
 secret. The server MUST generate a seed for each supported hash
 algorithm, see Section 7.2.

 According to the requirements in [RFC7384], the server MUST refresh
 each server seed periodically. Consequently, the cookie memorized by
 the client becomes obsolete. In this case, the client cannot verify
 the MAC attached to subsequent time response messages and has to
 respond accordingly by re-initiating the protocol with a cookie
 request (Appendix B.4).

7.2. Hash Algorithms

 Hash algorithms are used for calculation of the cookie and the MAC.
 The client and the server negotiate a hash algorithm H during the
 association phase at the beginning. The selected algorithm H MUST be
 used for all hashing processes in that run.

 In the TESLA scheme, hash algorithms are used as pseudo-random
 functions to construct the one-way key chain. Here, the utilized
 hash algorithm is communicated by the server and is non-negotiable.

 Note: Any hash algorithm is prone to be compromised in the future.
 A successful attack on a hash algorithm would enable any NTS

https://datatracker.ietf.org/doc/html/rfc7384

Sibold, et al. Expires August 28, 2016 [Page 16]

Internet-Draft NTS February 2016

 client to derive the server seed from its own cookie. Therefore,
 the server MUST have separate seed values for its different
 supported hash algorithms. This way, knowledge gained from an
 attack on a hash algorithm H can at least only be used to
 compromise such clients who use hash algorithm H as well.

7.3. MAC Calculation

 For the calculation of the MAC, client and server MUST use a Keyed-
 Hash Message Authentication Code (HMAC) as described in [RFC2104].
 The HMAC is generated with the hash algorithm specified by the client
 (see Section 7.2). The input values for the HMAC are the cookie and
 the content that has to be protected by NTS.

8. IANA Considerations

 As mentioned, this document generically specifies security measures
 whose utilization for any given specific time synchronization
 protocol requires a separate document. Consequently, this document
 itself does not have any IANA actions (TO BE REVIEWED).

9. Security Considerations

 Aspects of security for time synchronization protocols are treated
 throughout this document. For a comprehensive discussion of security
 requirements in time synchronization contexts, refer to [RFC7384].
 See Appendix A for a tabular overview of how NTS deals with those
 requirements.

 Additional NTS specific discussion of security issues can be found in
 the following subsections.

 Note: Any separate document describing the utilization of NTS to a
 specific time synchronization protocol may additionally introduce
 discussion of its own specific security considerations.

9.1. Privacy

 The payload of time synchronization protocol packets of two-way time
 transfer approaches like NTP and PTP consists basically of time
 stamps, which are not considered secret [RFC7384]. Therefore,
 encryption of the time synchronization protocol packet's payload is
 not considered in this document. However, an attacker can exploit
 the exchange of time synchronization protocol packets for topology
 detection and inference attacks as described in [RFC7624]. To make
 such attacks more difficult, that draft recommends the encryption of
 the packet payload. Yet, in the case of time synchronization
 protocols the confidentiality protection of time synchronization

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc7624

Sibold, et al. Expires August 28, 2016 [Page 17]

Internet-Draft NTS February 2016

 packet's payload is of secondary importance since the packet's meta
 data (IP addresses, port numbers, possibly packet size and regular
 sending intervals) carry more information than the payload. To
 enhance the privacy of the time synchronization partners, the usage
 of tunnel protocols such as IPsec and MACsec, where applicable, is
 therefore more suited than confidentiality protection of the payload.

9.2. Initial Verification of the Server Certificates

 The client may wish to verify the validity of certificates during the
 initial association phase. Since it generally has no reliable time
 during this initial communication phase, it is impossible to verify
 the period of validity of the certificates. To solve this chicken-
 and-egg problem, the client has to rely on external means.

9.3. Revocation of Server Certificates

 According to Section 7, it is the client's responsibility to initiate
 a new association with the server after the server's certificate
 expires. To this end, the client reads the expiration date of the
 certificate during the certificate message exchange (Appendix B.3.3).
 Furthermore, certificates may also be revoked prior to the normal
 expiration date. To increase security the client MAY periodically
 verify the state of the server's certificate via Online Certificate
 Status Protocol (OCSP) Online Certificate Status Protocol (OCSP)
 [RFC6960].

9.4. Mitigating Denial-of-Service for broadcast packets

 TESLA authentication buffers packets for delayed authentication.
 This makes the protocol vulnerable to flooding attacks, causing the
 client to buffer excessive numbers of packets. To add stronger DoS
 protection to the protocol, the client and the server use the "not
 re-using keys" scheme of TESLA as pointed out in Section 3.7.2 of RFC

4082 [RFC4082]. In this scheme the server never uses a key for the
 MAC generation more than once. Therefore, the client can discard any
 packet that contains a disclosed key it already knows, thus
 preventing memory flooding attacks.

 Discussion: Note that an alternative approach to enhance TESLA's
 resistance against DoS attacks involves the addition of a group
 MAC to each packet. This requires the exchange of an additional
 shared key common to the whole group. This adds additional
 complexity to the protocol and hence is currently not considered
 in this document.

https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4082

Sibold, et al. Expires August 28, 2016 [Page 18]

Internet-Draft NTS February 2016

9.5. Delay Attack

 In a packet delay attack, an adversary with the ability to act as a
 MITM delays time synchronization packets between client and server
 asymmetrically [RFC7384]. This prevents the client from accurately
 measuring the network delay, and hence its time offset to the server
 [Mizrahi]. The delay attack does not modify the content of the
 exchanged synchronization packets. Therefore, cryptographic means do
 not provide a feasible way to mitigate this attack. However, several
 non-cryptographic precautions can be taken in order to detect this
 attack.

 1. Usage of multiple time servers: this enables the client to detect
 the attack, provided that the adversary is unable to delay the
 synchronization packets between the majority of servers. This
 approach is commonly used in NTP to exclude incorrect time
 servers [RFC5905].

 2. Multiple communication paths: The client and server utilize
 different paths for packet exchange as described in the I-D
 [I-D.ietf-tictoc-multi-path-synchronization]. The client can
 detect the attack, provided that the adversary is unable to
 manipulate the majority of the available paths [Shpiner]. Note
 that this approach is not yet available, neither for NTP nor for
 PTP.

 3. Usage of an encrypted connection: the client exchanges all
 packets with the time server over an encrypted connection (e.g.
 IPsec). This measure does not mitigate the delay attack, but it
 makes it more difficult for the adversary to identify the time
 synchronization packets.

 4. For unicast-type messages: Introduction of a threshold value for
 the delay time of the synchronization packets. The client can
 discard a time server if the packet delay time of this time
 server is larger than the threshold value.

 Additional provision against delay attacks has to be taken for
 broadcast-type messages. This mode relies on the TESLA scheme which
 is based on the requirement that a client and the broadcast server
 are loosely time synchronized. Therefore, a broadcast client has to
 establish time synchronization with its broadcast server before it
 starts utilizing broadcast messages for time synchronization.

 One possible way to achieve this initial synchronization is to
 establish a unicast association with its broadcast server until time
 synchronization and calibration of the packet delay time is achieved.
 After that, the client can establish a broadcast association with the

https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc5905

Sibold, et al. Expires August 28, 2016 [Page 19]

Internet-Draft NTS February 2016

 broadcast server and utilizes TESLA to verify integrity and
 authenticity of any received broadcast packets.

 An adversary who is able to delay broadcast packets can cause a time
 adjustment at the receiving broadcast clients. If the adversary
 delays broadcast packets continuously, then the time adjustment will
 accumulate until the loose time synchronization requirement is
 violated, which breaks the TESLA scheme. To mitigate this
 vulnerability the security condition in TESLA has to be supplemented
 by an additional check in which the client, upon receipt of a
 broadcast message, verifies the status of the corresponding key via a
 unicast message exchange with the broadcast server (see Appendix C.4
 for a detailed description of this check). Note that a broadcast
 client should also apply the above-mentioned precautions as far as
 possible.

9.6. Random Number Generation

 At various points of the protocol, the generation of random numbers
 is required. The employed methods of generation need to be
 cryptographically secure. See [RFC4086] for guidelines concerning
 this topic.

10. Acknowledgements

 The authors would like to thank Tal Mizrahi, Russ Housley, Steven
 Bellovin, David Mills, Kurt Roeckx, Rainer Bermbach, Martin Langer
 and Florian Weimer for discussions and comments on the design of NTS.
 Also, thanks go to Harlan Stenn and Richard Welty for their technical
 review and specific text contributions to this document.

11. References

11.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, DOI
 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Sibold, et al. Expires August 28, 2016 [Page 20]

Internet-Draft NTS February 2016

 [RFC4082] Perrig, A., Song, D., Canetti, R., Tygar, J., and B.
 Briscoe, "Timed Efficient Stream Loss-Tolerant
 Authentication (TESLA): Multicast Source Authentication
 Transform Introduction", RFC 4082, DOI 10.17487/RFC4082,
 June 2005, <http://www.rfc-editor.org/info/rfc4082>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <http://www.rfc-editor.org/info/rfc7384>.

11.2. Informative References

 [I-D.ietf-ntp-cms-for-nts-message]
 Sibold, D., Teichel, K., Roettger, S., and R. Housley,
 "Protecting Network Time Security Messages with the
 Cryptographic Message Syntax (CMS)", draft-ietf-ntp-cms-

for-nts-message-04 (work in progress), July 2015.

 [I-D.ietf-tictoc-multi-path-synchronization]
 Shpiner, A., Tse, R., Schelp, C., and T. Mizrahi, "Multi-
 Path Time Synchronization", draft-ietf-tictoc-multi-path-

synchronization-02 (work in progress), April 2015.

 [IEEE1588]
 IEEE Instrumentation and Measurement Society. TC-9 Sensor
 Technology, "IEEE standard for a precision clock
 synchronization protocol for networked measurement and
 control systems", 2008.

 [Mizrahi] Mizrahi, T., "A game theoretic analysis of delay attacks
 against time synchronization protocols", in Proceedings of
 Precision Clock Synchronization for Measurement Control
 and Communication, ISPCS 2012, pp. 1-6, September 2012.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

https://datatracker.ietf.org/doc/html/rfc4082
http://www.rfc-editor.org/info/rfc4082
https://datatracker.ietf.org/doc/html/rfc7384
http://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-cms-for-nts-message-04
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-cms-for-nts-message-04
https://datatracker.ietf.org/doc/html/draft-ietf-tictoc-multi-path-synchronization-02
https://datatracker.ietf.org/doc/html/draft-ietf-tictoc-multi-path-synchronization-02
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905

Sibold, et al. Expires August 28, 2016 [Page 21]

Internet-Draft NTS February 2016

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <http://www.rfc-editor.org/info/rfc6960>.

 [RFC7624] Barnes, R., Schneier, B., Jennings, C., Hardie, T.,
 Trammell, B., Huitema, C., and D. Borkmann,
 "Confidentiality in the Face of Pervasive Surveillance: A
 Threat Model and Problem Statement", RFC 7624, DOI
 10.17487/RFC7624, August 2015,
 <http://www.rfc-editor.org/info/rfc7624>.

 [Shpiner] Shpiner, A., Revah, Y., and T. Mizrahi, "Multi-path Time
 Protocols", in Proceedings of Precision Clock
 Synchronization for Measurement Control and Communication,
 ISPCS 2013, pp. 1-6, September 2013.

Appendix A. (informative) TICTOC Security Requirements

 The following table compares the NTS specifications against the
 TICTOC security requirements [RFC7384].

 +---------+------------------------------+-------------+------------+
 | Section | Requirement from RFC 7384 | Requirement | NTS |
 | | | level | |
 +---------+------------------------------+-------------+------------+
 | 5.1.1 | Authentication of Servers | MUST | OK |
 +---------+------------------------------+-------------+------------+
 | 5.1.1 | Authorization of Servers | MUST | OK |
 +---------+------------------------------+-------------+------------+
 | 5.1.2 | Recursive Authentication of | MUST | OK |
 | | Servers (Stratum 1) | | |
 +---------+------------------------------+-------------+------------+
 | 5.1.2 | Recursive Authorization of | MUST | OK |
 | | Servers (Stratum 1) | | |
 +---------+------------------------------+-------------+------------+
 | 5.1.3 | Authentication and | MAY | Optional, |
 | | Authorization of Clients | | Limited |
 +---------+------------------------------+-------------+------------+
 | 5.2 | Integrity protection | MUST | OK |
 +---------+------------------------------+-------------+------------+
 | 5.3 | Spoofing Prevention | MUST | OK |
 +---------+------------------------------+-------------+------------+
 | 5.4 | Protection from DoS attacks | SHOULD | OK |
 | | against the time protocol | | |
 +---------+------------------------------+-------------+------------+
 | 5.5 | Replay protection | MUST | OK |

https://datatracker.ietf.org/doc/html/rfc6960
http://www.rfc-editor.org/info/rfc6960
https://datatracker.ietf.org/doc/html/rfc7624
http://www.rfc-editor.org/info/rfc7624
https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc7384

Sibold, et al. Expires August 28, 2016 [Page 22]

Internet-Draft NTS February 2016

 +---------+------------------------------+-------------+------------+
 | 5.6 | Key freshness | MUST | OK |
 +---------+------------------------------+-------------+------------+
 | | Security association | SHOULD | OK |
 +---------+------------------------------+-------------+------------+
 | | Unicast and multicast | SHOULD | OK |
 | | associations | | |
 +---------+------------------------------+-------------+------------+
 | 5.7 | Performance: no degradation | MUST | OK |
 | | in quality of time transfer | | |
 +---------+------------------------------+-------------+------------+
 | | Performance: lightweight | SHOULD | OK |
 | | computation | | |
 +---------+------------------------------+-------------+------------+
 | | Performance: storage | SHOULD | OK |
 +---------+------------------------------+-------------+------------+
 | | Performance: bandwidth | SHOULD | OK |
 +---------+------------------------------+-------------+------------+
 | 5.8 | Confidentiality protection | MAY | NO |
 +---------+------------------------------+-------------+------------+
5.9	Protection against Packet	MUST	Limited*)
	Delay and Interception		
	Attacks		
+---------+------------------------------+-------------+------------+			
5.10	Secure mode	MUST	OK
+---------+------------------------------+-------------+------------+			
	Hybrid mode	SHOULD	-
 +---------+------------------------------+-------------+------------+

 *) See discussion in Section 9.5.

 Comparison of NTS specification against Security Requirements of Time
 Protocols in Packet Switched Networks (RFC 7384)

Appendix B. (normative) Inherent Association Protocol Messages

 This appendix presents a procedure that performs the association, the
 cookie, and also the broadcast parameter message exchanges between a
 client and a server. This procedure is one possible way to achieve
 the preconditions listed in Sections Section 6.1.1, Section 6.2.1,
 and Section 6.3.1 while taking into account the objectives given in
 Section Section 4.

B.1. Overview of NTS with Inherent Association Protocol

 This inherent association protocol applies X.509 certificates to
 verify the authenticity of the time server and to exchange the
 cookie. This is done in two separate message exchanges, described

https://datatracker.ietf.org/doc/html/rfc7384

Sibold, et al. Expires August 28, 2016 [Page 23]

Internet-Draft NTS February 2016

 below. An additional required exchange in advance serves to limit
 the amplification potential of the association message exchange.

 A client needs a public/private key pair for encryption, with the
 public key enclosed in a certificate. A server needs a public/
 private key pair for signing, with the public key enclosed in a
 certificate. If a participant intends to act as both a client and a
 server, it MUST have two different key pairs for these purposes.

 If this protocol is employed, the hash value of the client's
 certificate is used as the client's key input value, i.e. the cookie
 is calculated according to:

 cookie = MSB_ (HMAC(server seed, H(certificate of client))).

 The client's certificate contains the client's public key and enables
 the server to identify the client, if client authorization is
 desired.

B.2. Access Message Exchange

 This message exchange serves only to prevent the next (association)
 exchange from being abusable for amplification denial-of-service
 attacks.

B.2.1. Goals of the Access Message Exchange

 The access message exchange:

 o transfers a secret value from the server to the client
 (initiator),

 o the secret value permits the client to initiate an association
 message exchange.

B.2.2. Message Type: "client_access"

 This message is sent by a client who intends to perform an
 association exchange with the server in the future. It contains:

 o the NTS message ID "client_access".

B.2.3. Message Type: "server_access"

 This message is sent by the server on receipt of a client_access
 message. It contains:

 o the NTS message ID "server_access",

Sibold, et al. Expires August 28, 2016 [Page 24]

Internet-Draft NTS February 2016

 o an access key.

B.2.4. Procedure Overview of the Access Exchange

 For an access exchange, the following steps are performed:

 1. The client sends a client_access message to the server.

 2. Upon receipt of a client_access, the server calculates the access
 key. It then sends a reply in the form of a server_access
 message. The server must either memorize the access key or
 alternatively apply a means by which it can reconstruct the
 access key. Note that in both cases the access key must be
 correlated with the address of the requester. Note also that if
 the server memorizes the access key for a requester, it has to
 keep state for a certain amount of time.

 3. The client waits for a response in the form of a server_access
 message. Upon receipt of one, it MUST memorize the included
 access key.

B.3. Association Message Exchange

 In this message exchange, the participants negotiate the hash and
 encryption algorithms that are used throughout the protocol. In
 addition, the client receives the certification chain up to a trusted
 anchor. With the established certification chain the client is able
 to verify the server's signatures and, hence, the authenticity of
 future NTS messages from the server is ensured.

B.3.1. Goals of the Association Exchange

 The association exchange:

 o enables the client to verify any communication with the server as
 authentic,

 o lets the participants negotiate NTS version and algorithms,

 o guarantees authenticity and integrity of the negotiation result to
 the client,

 o guarantees to the client that the negotiation result is based on
 the client's original, unaltered request.

Sibold, et al. Expires August 28, 2016 [Page 25]

Internet-Draft NTS February 2016

B.3.2. Message Type: "client_assoc"

 This message is sent by the client if it wants to perform association
 with a server. It contains

 o the NTS message ID "client_assoc",

 o a nonce,

 o the access key obtained earlier via an access message exchange,

 o the version number of NTS that the client wants to use (this
 SHOULD be the highest version number that it supports),

 o a selection of accepted hash algorithms, and

 o a selection of accepted encryption algorithms.

B.3.3. Message Type: "server_assoc"

 This message is sent by the server upon receipt of client_assoc. It
 contains

 o the NTS message ID "server_assoc",

 o the nonce transmitted in client_assoc,

 o the client's proposal for the version number, selection of
 accepted hash algorithms and selection of accepted encryption
 algorithms, as transmitted in client_assoc,

 o the version number used for the rest of the protocol (which SHOULD
 be determined as the minimum over the client's suggestion in the
 client_assoc message and the highest supported by the server),

 o the server's choice of algorithm for encryption and for
 cryptographic hashing, all of which MUST be chosen from the
 client's proposals,

 o a signature, calculated over the data listed above, with the
 server's private key and according to the signature algorithm
 which is also used for the certificates that are included (see
 below), and

 o a chain of certificates, which starts at the server and goes up to
 a trusted authority; each certificate MUST be certified by the one
 directly following it.

Sibold, et al. Expires August 28, 2016 [Page 26]

Internet-Draft NTS February 2016

B.3.4. Procedure Overview of the Association Exchange

 For an association exchange, the following steps are performed:

 1. The client sends a client_assoc message to the server. It MUST
 keep the transmitted values for the version number and algorithms
 available for later checks.

 2. Upon receipt of a client_assoc message, the server checks the
 validity of the included access key. If it is not valid, the
 server MUST abort communication. If it is valid, the server
 constructs and sends a reply in the form of a server_assoc
 message as described in Appendix B.3.3. Upon unsuccessful
 negotiation for version number or algorithms the server_assoc
 message MUST contain an error code.

 3. The client waits for a reply in the form of a server_assoc
 message. After receipt of the message it performs the following
 checks:

 * The client checks that the message contains a conforming
 version number.

 * It checks that the nonce sent back by the server matches the
 one transmitted in client_assoc,

 * It also verifies that the server has chosen the encryption and
 hash algorithms from its proposal sent in the client_assoc
 message and that this proposal was not altered.

 * Furthermore, it performs authenticity checks on the
 certificate chain and the signature.

 If one of the checks fails, the client MUST abort the run.

Sibold, et al. Expires August 28, 2016 [Page 27]

Internet-Draft NTS February 2016

 +------------------------+
 | o Check access key |
 +------------------------+
 | o Choose version |
 | o Choose algorithms |
 | o Acquire certificates |
 | o Assemble response |
 | o Create signature |
 +-----------+------------+
 |
 <-+->

 Server --------------------------->
 /| \
 client_ / \ server_
 assoc / \ assoc
 / \|
 Client --------------------------->

 <------ Association ----->
 exchange

 Procedure for association and cookie exchange.

B.4. Cookie Message Exchange

 During this message exchange, the server transmits a secret cookie to
 the client securely. The cookie will later be used for integrity
 protection during unicast time synchronization.

B.4.1. Goals of the Cookie Exchange

 The cookie exchange:

 o enables the server to check the client's authorization via its
 certificate (optional),

 o supplies the client with the correct cookie and corresponding KIV
 for its association to the server,

 o guarantees to the client that the cookie originates from the
 server and that it is based on the client's original, unaltered
 request.

 o guarantees that the received cookie is unknown to anyone but the
 server and the client.

Sibold, et al. Expires August 28, 2016 [Page 28]

Internet-Draft NTS February 2016

B.4.2. Message Type: "client_cook"

 This message is sent by the client upon successful authentication of
 the server. In this message, the client requests a cookie from the
 server. The message contains

 o the NTS message ID "client_cook",

 o a nonce,

 o the negotiated version number,

 o the negotiated signature algorithm,

 o the negotiated encryption algorithm,

 o the negotiated hash algorithm H,

 o the client's certificate.

B.4.3. Message Type: "server_cook"

 This message is sent by the server upon receipt of a client_cook
 message. The server generates the hash of the client's certificate,
 as conveyed during client_cook, in order to calculate the cookie
 according to Section 5. This message contains

 o the NTS message ID "server_cook"

 o the version number as transmitted in client_cook,

 o a concatenated datum which is encrypted with the client's public
 key, according to the encryption algorithm transmitted in the
 client_cook message. The concatenated datum contains

 * the nonce transmitted in client_cook, and

 * the cookie.

 o a signature, created with the server's private key, calculated
 over all of the data listed above. This signature MUST be
 calculated according to the transmitted signature algorithm from
 the client_cook message.

Sibold, et al. Expires August 28, 2016 [Page 29]

Internet-Draft NTS February 2016

B.4.4. Procedure Overview of the Cookie Exchange

 For a cookie exchange, the following steps are performed:

 1. The client sends a client_cook message to the server. The client
 MUST save the included nonce until the reply has been processed.

 2. Upon receipt of a client_cook message, the server checks whether
 it supports the given cryptographic algorithms. It then
 calculates the cookie according to the formula given in

Section 5. The server MAY use the client's certificate to check
 that the client is authorized to use the secure time
 synchronization service. With this, it MUST construct a
 server_cook message as described in Appendix B.4.3.

 3. The client awaits a reply in the form of a server_cook message;
 upon receipt it executes the following actions:

 * It verifies that the received version number matches the one
 negotiated beforehand.

 * It verifies the signature using the server's public key. The
 signature has to authenticate the encrypted data.

 * It decrypts the encrypted data with its own private key.

 * It checks that the decrypted message is of the expected
 format: the concatenation of a nonce and a cookie of the
 expected bit lengths.

 * It verifies that the received nonce matches the nonce sent in
 the client_cook message.

 If one of those checks fails, the client MUST abort the run.

Sibold, et al. Expires August 28, 2016 [Page 30]

Internet-Draft NTS February 2016

 +----------------------------+
 | o OPTIONAL: Check client's |
 | authorization |
 | o Generate cookie |
 | o Encrypt inner message |
 | o Generate signature |
 +-------------+--------------+
 |
 <-+->

 Server --------------------------->
 /| \
 client_ / \ server_
 cook / \ cook
 / \|
 Client --------------------------->

 <--- Cookie exchange -->

 Procedure for association and cookie exchange.

B.4.5. Broadcast Parameter Messages

 In this message exchange, the client receives the necessary
 information to execute the TESLA protocol in a secured broadcast
 association. The client can only initiate a secure broadcast
 association after successful association and cookie exchanges and
 only if it has made sure that its clock is roughly synchronized to
 the server's.

 See Appendix C for more details on TESLA.

B.4.5.1. Goals of the Broadcast Parameter Exchange

 The broadcast parameter exchange

 o provides the client with all the information necessary to process
 broadcast time synchronization messages from the server, and

 o guarantees authenticity, integrity and freshness of the broadcast
 parameters to the client.

B.4.5.2. Message Type: "client_bpar"

 This message is sent by the client in order to establish a secured
 time broadcast association with the server. It contains

 o the NTS message ID "client_bpar",

Sibold, et al. Expires August 28, 2016 [Page 31]

Internet-Draft NTS February 2016

 o the NTS version number negotiated during association,

 o a nonce, and

 o the signature algorithm negotiated during association.

B.4.5.3. Message Type: "server_bpar"

 This message is sent by the server upon receipt of a client_bpar
 message during the broadcast loop of the server. It contains

 o the NTS message ID "server_bpar",

 o the version number as transmitted in the client_bpar message,

 o the nonce transmitted in client_bpar,

 o the one-way functions used for building the key chain, and

 o the disclosure schedule of the keys. This contains:

 * the last key of the key chain,

 * time interval duration,

 * the disclosure delay (number of intervals between use and
 disclosure of a key),

 * the time at which the next time interval will start, and

 * the next interval's associated index.

 o The message also contains a signature signed by the server with
 its private key, verifying all the data listed above.

B.4.5.4. Procedure Overview of the Broadcast Parameter Exchange

 A broadcast parameter exchange consists of the following steps:

 1. The client sends a client_bpar message to the server. It MUST
 remember the transmitted values for the nonce, the version number
 and the signature algorithm.

 2. Upon receipt of a client_bpar message, the server constructs and
 sends a server_bpar message as described in Appendix B.4.5.3.

 3. The client waits for a reply in the form of a server_bpar
 message, on which it performs the following checks:

Sibold, et al. Expires August 28, 2016 [Page 32]

Internet-Draft NTS February 2016

 * The message must contain all the necessary information for the
 TESLA protocol, as listed in Appendix B.4.5.3.

 * The message must contain a nonce belonging to a client_bpar
 message that the client has previously sent.

 * Verification of the message's signature.

 If any information is missing or if the server's signature cannot
 be verified, the client MUST abort the broadcast run. If all
 checks are successful, the client MUST remember all the broadcast
 parameters received for later checks.

 +---------------------+
 | o Assemble response |
 | o Create public-key |
 | signature |
 +----------+----------+
 |
 <-+->

 Server --->
 /| \
 client_ / \ server_
 bpar / \ bpar
 / \|
 Client --->

 <------- Broadcast ------> <- Client-side ->
 parameter validity
 exchange checks

 Procedure for unicast time synchronization exchange.

Appendix C. (normative) Using TESLA for Broadcast-Type Messages

 For broadcast-type messages, NTS adopts the TESLA protocol with some
 customizations. This appendix provides details on the generation and
 usage of the one-way key chain collected and assembled from
 [RFC4082]. Note that NTS uses the "not re-using keys" scheme of
 TESLA as described in Section 3.7.2. of [RFC4082].

C.1. Server Preparation

 Server setup:

https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4082#section-3.7.2

Sibold, et al. Expires August 28, 2016 [Page 33]

Internet-Draft NTS February 2016

 1. The server determines a reasonable upper bound B on the network
 delay between itself and an arbitrary client, measured in
 milliseconds.

 2. It determines the number n+1 of keys in the one-way key chain.
 This yields the number n of keys that are usable to authenticate
 broadcast packets. This number n is therefore also the number of
 time intervals during which the server can send authenticated
 broadcast messages before it has to calculate a new key chain.

 3. It divides time into n uniform intervals I_1, I_2, ..., I_n.
 Each of these time intervals has length L, measured in
 milliseconds. In order to fulfill the requirement 3.7.2. of RFC

4082, the time interval L has to be shorter than the time
 interval between the broadcast messages.

 4. The server generates a random key K_n.

 5. Using a one-way function F, the server generates a one-way chain
 of n+1 keys K_0, K_1, ..., K_{n} according to

 K_i = F(K_{i+1}).

 6. Using another one-way function F', it generates a sequence of n
 MAC keys K'_0, K'_1, ..., K'_{n-1} according to

 K'_i = F'(K_i).

 7. Each MAC key K'_i is assigned to the time interval I_i.

 8. The server determines the key disclosure delay d, which is the
 number of intervals between using a key and disclosing it. Note
 that although security is provided for all choices d>0, the
 choice still makes a difference:

 * If d is chosen too short, the client might discard packets
 because it fails to verify that the key used for its MAC has
 not yet been disclosed.

 * If d is chosen too long, the received packets have to be
 buffered for an unnecessarily long time before they can be
 verified by the client and be subsequently utilized for time
 synchronization.

 It is RECOMMENDED that the server calculate d according to

 d = ceil(2*B / L) + 1,

https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4082

Sibold, et al. Expires August 28, 2016 [Page 34]

Internet-Draft NTS February 2016

 where ceil yields the smallest integer greater than or equal to
 its argument.

 < -
 Generation of Keys

 F F F F
 K_0 <-------- K_1 <-------- ... <-------- K_{n-1} <------- K_n
 | | | |
 | | | |
 | F' | F' | F' | F'
 | | | |
 v v v v
 K'_0 K'_1 ... K'_{n-1} K'_n
 [______________|____ ____|_________________|_______]
 I_1 ... I_{n-1} I_n

 Course of Time/Usage of Keys
 ->

 A schematic explanation of the TESLA protocol's one-way key chain

C.2. Client Preparation

 A client needs the following information in order to participate in a
 TESLA broadcast:

 o One key K_i from the one-way key chain, which has to be
 authenticated as belonging to the server. Typically, this will be
 K_0.

 o The disclosure schedule of the keys. This consists of:

 * the length n of the one-way key chain,

 * the length L of the time intervals I_1, I_2, ..., I_n,

 * the starting time T_i of an interval I_i. Typically this is
 the starting time T_1 of the first interval;

 * the disclosure delay d.

 o The one-way function F used to recursively derive the keys in the
 one-way key chain,

 o The second one-way function F' used to derive the MAC keys K'_0,
 K'_1, ... , K'_n from the keys in the one-way chain.

Sibold, et al. Expires August 28, 2016 [Page 35]

Internet-Draft NTS February 2016

 o An upper bound D_t on how far its own clock is "behind" that of
 the server.

 Note that if D_t is greater than (d - 1) * L, then some authentic
 packets might be discarded. If D_t is greater than d * L, then all
 authentic packets will be discarded. In the latter case, the client
 SHOULD NOT participate in the broadcast, since there will be no
 benefit in doing so.

C.3. Sending Authenticated Broadcast Packets

 During each time interval I_i, the server sends at most one
 authenticated broadcast packet P_i. Such a packet consists of:

 o a message M_i,

 o the index i (in case a packet arrives late),

 o a MAC authenticating the message M_i, with K'_i used as key,

 o the key K_{i-d}, which is included for disclosure.

C.4. Authentication of Received Packets

 When a client receives a packet P_i as described above, it first
 checks that it has not already received a packet with the same
 disclosed key. This is done to avoid replay/flooding attacks. A
 packet that fails this test is discarded.

 Next, the client begins to check the packet's timeliness by ensuring
 that according to the disclosure schedule and with respect to the
 upper bound D_t determined above, the server cannot have disclosed
 the key K_i yet. Specifically, it needs to check that the server's
 clock cannot read a time that is in time interval I_{i+d} or later.
 Since it works under the assumption that the server's clock is not
 more than D_t "ahead" of the client's clock, the client can calculate
 an upper bound t_i for the server's clock at the time when P_i
 arrived. This upper bound t_i is calculated according to

 t_i = R + D_t,

 where R is the client's clock at the arrival of P_i. This implies
 that at the time of arrival of P_i, the server could have been in
 interval I_x at most, with

 x = floor((t_i - T_1) / L) + 1,

Sibold, et al. Expires August 28, 2016 [Page 36]

Internet-Draft NTS February 2016

 where floor gives the greatest integer less than or equal to its
 argument. The client now needs to verify that

 x < i+d

 is valid (see also Section 3.5 of [RFC4082]). If it is falsified, it
 is discarded.

 If the check above is successful, the client performs another more
 rigorous check: it sends a key check request to the server (in the
 form of a client_keycheck message), asking explicitly if K_i has
 already been disclosed. It remembers the time stamp t_check of the
 sending time of that request as well as the nonce it used correlated
 with the interval number i. If it receives an answer from the server
 stating that K_i has not yet been disclosed and it is able to verify
 the HMAC on that response, then it deduces that K_i was undisclosed
 at t_check and therefore also at R. In this case, the client accepts
 P_i as timely.

 Next the client verifies that a newly disclosed key K_{i-d} belongs
 to the one-way key chain. To this end, it applies the one-way
 function F to K_{i-d} until it can verify the identity with an
 earlier disclosed key (see Clause 3.5 in RFC 4082, item 3).

 Next the client verifies that the transmitted time value s_i belongs
 to the time interval I_i, by checking

 T_i =< s_i, and

 s_i < T_{i+1}.

 If it is falsified, the packet MUST be discarded and the client MUST
 reinitialize its broadcast module by performing time synchronization
 by other means than broadcast messages, and it MUST perform a new
 broadcast parameter exchange (because a falsification of this check
 yields that the packet was not generated according to protocol, which
 suggests an attack).

 If a packet P_i passes all the tests listed above, it is stored for
 later authentication. Also, if at this time there is a package with
 index i-d already buffered, then the client uses the disclosed key
 K_{i-d} to derive K'_{i-d} and uses that to check the MAC included in
 package P_{i-d}. Upon success, it regards M_{i-d} as authenticated.

https://datatracker.ietf.org/doc/html/rfc4082#section-3.5
https://datatracker.ietf.org/doc/html/rfc4082

Sibold, et al. Expires August 28, 2016 [Page 37]

Internet-Draft NTS February 2016

Appendix D. (informative) Dependencies

 +---------+--------------+--------+-------------------------------+
 | Issuer | Type | Owner | Description |
 +---------+--------------+--------+-------------------------------+
 | Server | private key | server | Used for server_assoc, |
 | PKI | (signature) | | server_cook, server_bpar. |
 | +--------------+--------+ The server uses the private |
 | | public key | client | key to sign these messages. |
 | | (signature) | | The client uses the public |
 | +--------------+--------+ key to verify them. |
 | | certificate | server | The certificate is used in |
 | | | | server_assoc messages, for |
 | | | | verifying authentication and |
 | | | | (optionally) authorization. |
 +---------+--------------+--------+-------------------------------+
 | Client | private key | client | The server uses the client's |
 | PKI | (encryption) | | public key to encrypt the |
 | +--------------+--------+ content of server_cook |
 | | public key | server | messages. The client uses |
 | | (encryption) | | the private key to decrypt |
 | +--------------+--------+ them. The certificate is |
 | | certificate | client | sent in client_cook messages, |
 | | | | where it is used for trans- |
 | | | | portation of the public key |
 | | | | as well as (optionally) for |
 | | | | verification of client |
 | | | | authorization. |
 +---------+--------------+--------+-------------------------------+

 This table shows the kind of cryptographic resources that NTS
 participants of server and client role should have ready before NTS
 communication starts.

Sibold, et al. Expires August 28, 2016 [Page 38]

Internet-Draft NTS February 2016

 ++===++
 || ||
 || Secure Authentication and Cookie Exchange ||
 || ||
 ++=======_ _=================================++
 |
 | At least one
 | successful
 V
 ++=======[]=======++
 || Unicast Time |>-----\ As long as further
 || Synchronization || | synchronization
 || Exchange(s) |<-----/ is desired
 ++=======_ _=======++
 |
 \ Other (unspecified)
 Sufficient \ / methods which give
 accuracy \ either or / sufficient accuracy
 \----------\ /---------/
 |
 |
 V
 ++========[]=========++
 || Broadcast ||
 || Parameter Exchange ||
 ++========_ _=========++
 |
 | One successful
 | per client
 V
 ++=======[]=======++
 || Broadcast Time |>--------\ As long as further
 || Synchronization || | synchronization
 || Reception |<--------/ is desired
 ++=======_ _=======++
 |
 / \
 either / \ or
 /----------/ \-------------\
 | |
 V V
 ++========[]========++ ++========[]========++
 || Keycheck Exchange || || Keycheck Exchange ||
 ++===================++ || with TimeSync ||
 ++===================++

 This diagram shows the dependencies between the different message
 exchanges and procedures which NTS offers.

Sibold, et al. Expires August 28, 2016 [Page 39]

Internet-Draft NTS February 2016

Authors' Addresses

 Dieter Sibold
 Physikalisch-Technische Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-8420
 Fax: +49-531-592-698420
 Email: dieter.sibold@ptb.de

 Stephen Roettger
 Google Inc.

 Email: stephen.roettger@googlemail.com

 Kristof Teichel
 Physikalisch-Technische Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-8421
 Email: kristof.teichel@ptb.de

Sibold, et al. Expires August 28, 2016 [Page 40]

