
HTTPbis Working Group R. Peon
Internet-Draft Google, Inc
Intended status: Informational H. Ruellan
Expires: December 27, 2013 Canon CRF
 June 25, 2013

HTTP Header Compression
draft-ietf-httpbis-header-compression-00

Abstract

 This document describes a format adapted to efficiently represent
 HTTP headers in the context of HTTP/2.0.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 27, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

Peon & Ruellan Expires December 27, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP Header Compression June 2013

1. Introduction . 2
2. Overview . 2
2.1. Outline . 3

3. Header Encoding . 3
3.1. Encoding Components 3
3.2. Header Table . 4
3.3. Header Representation 5
3.3.1. Literal Representation 5
3.3.2. Indexed Representation 5

3.4. Differential Coding 5
4. Detailed Format . 6
4.1. Header Blocks . 6
4.2. Low-level representations 7
4.2.1. Integer representation 7
4.2.2. String literal representation 9

4.3. Indexed Header Representation 9
4.4. Literal Header Representation 9
4.4.1. Literal Header without Indexing 9
4.4.2. Literal Header with Incremental Indexing 10
4.4.3. Literal Header with Substitution Indexing 10

5. Parameter Negotiation . 11
6. Security Considerations 11
7. IANA Considerations . 11
8. Informative References 11
Appendix A. Initial header names 12
A.1. Requests . 12
A.2. Responses . 13

Appendix B. Example . 14
B.1. First header set . 14
B.2. Second header set . 15

 Authors' Addresses . 16

1. Introduction

 This document describes a format adapted to efficiently represent
 HTTP headers in the context of HTTP/2.0.

2. Overview

 In HTTP/1.X, HTTP headers, which are necessary for the functioning of
 the protocol, are transmitted with no transformations.
 Unfortunately, the amount of redundancy in both the keys and the
 values of these headers is astonishingly high, and is the cause of
 increased latency on lower bandwidth links. This indicates that an
 alternate encoding for headers would be beneficial to latency, and
 that is what is proposed here. As shown by SPDY [SPDY], Deflate
 compresses HTTP very effectively. However, the use of a compression

Peon & Ruellan Expires December 27, 2013 [Page 2]

Internet-Draft HTTP Header Compression June 2013

 scheme which allows for arbitrary matches against the previously
 encoded data (such as Deflate) exposes users to security issues. In
 particular, the compression of sensitive data, together with other
 data controlled by an attacker, may lead to leakage of that sensitive
 data, even when the resultant bytes are transmitted over an encrypted
 channel. Another consideration is that processing and memory costs
 of a compressor such as Deflate may also be too high for some classes
 of devices, for example when doing forward or reverse proxying.

2.1. Outline

 The HTTP header representation described in this document is based on
 indexing tables that store (name, value) pairs, called header tables
 in the remainder of this document. This scheme is believed to be
 safe for all known attacks against the compression context today.
 Header tables are incrementally updated during the whole HTTP/2.0
 session. Two independent header tables are used during a HTTP/2.0
 session, one for HTTP request headers and one for HTTP response
 headers.

 The encoder is responsible for deciding which headers to insert as
 (name, value) pairs in the header table. The decoder then does
 exactly what the encoder prescribes, ending in a state that exactly
 matches the encoder's state. This enables decoders to remain simple
 and understand a wide variety of encoders.

 A header may be represented as a literal or as an index. If
 represented as a literal, the representation specifies whether this
 header is used to update the indexing table. The different
 representations are described in Section 3.3.

 A set of headers is coded as a difference from the previous set of
 headers.

 An example illustrating the use these different mechanisms to
 represent headers is available in Appendix B.

3. Header Encoding

3.1. Encoding Components

 The encoding and decoding of headers relies on a few components.
 First, a header table (see Section 3.2) is used to associate headers
 to index values. Second, a set of headers is encoded as a difference
 from the previous reference set of headers (see Section 3.4).

 As messages are exchanged in two directions, from client to server
 and from server to client, there are two sets of components: one for

Peon & Ruellan Expires December 27, 2013 [Page 3]

Internet-Draft HTTP Header Compression June 2013

 each direction. All the headers sent in messages from the client to
 the server are encoded (and decoded) using one set of components.
 All the headers sent in messages from the server to the client
 (including headers contained in PUSH_PROMISE frame) are encoded using
 the other set of compotents.

3.2. Header Table

 A header table consists of an ordered list of (name, value) pairs. A
 pair is either inserted at the end of the table or replaces an
 existing pair depending on the chosen representation. A pair can be
 represented as an index which is its position in the table, starting
 with 0 for the first entry.

 Header names are always represented as lower-case strings. An input
 header name matches the header name of a (name, value) pair stored in
 the Header Table if they are equal using a character-based, _case
 insensitive_ comparison. An input header value matches the header
 value of a (name, value) pair stored in the Header Table if they are
 equal using a character-based, _case sensitive_ comparison. An input
 header (name, value) pair matches a pair in the Header Table if both
 the name and value are matching as per above.

 The header table is progressively updated based on headers
 represented as literal (as defined in Section 3.3.1). Two update
 mechanisms are defined:

 o Incremental indexing: the represented header is inserted at the
 end of the header table as a (name, value) pair. The inserted
 pair index is set to the next free index in the table: it is equal
 to the number of headers in the table before its insertion.

 o Substitution indexing: the represented header contains an index to
 an existing (name, value) pair. The existing pair value is
 replaced by the pair representing the new header.

 Incremental and substitution indexing are optional. If none of them
 is selected in a header representation, the header table is not
 updated. In particular, no update happens on the header table when
 processing an indexed representation.

 The header table size can be bounded so as to limit the memory
 requirements (see the SETTINGS_MAX_BUFFER_SIZE in Section 5). The
 header table size is defined as the sum of the size of each entry of
 the table. The size of an entry is the sum of the length in bytes
 (as defined in Section 4.2.2) of its name, of value's length in bytes
 and of 32 bytes (for accounting for the entry structure overhead).

Peon & Ruellan Expires December 27, 2013 [Page 4]

Internet-Draft HTTP Header Compression June 2013

 When an entry is added to the header table, if the header table size
 is greater than the limit, the table size is reduced by dropping the
 entries at the beginning of the table until the header table size
 becomes lower than or equal to the limit. Dropping entries from the
 beginning of the table causes a renumbering of the remaining entries.
 [[Feedback is needed on this automatic eviction strategy.]]

 To optimize the representation of the headers exchanged at the
 beginning of an HTTP/2.0 session, the header table is initialized
 with common headers. Two lists of initial headers are provided in

Appendix A. One is for messages sent from a client to a server, the
 other is for messages sent from a server to a client.

3.3. Header Representation

3.3.1. Literal Representation

 The literal representation defines a new header. A literal header is
 represented as:

 o A header name, with two possible representations:

 * A literal string, as described in Section 4.2.2.

 * A index in the header table referencing the name of the
 corresponding header. The index is represented as an integer,
 as described in Section 4.2.1.

 o The header value, represented as a literal string, as described in
Section 4.2.2.

3.3.2. Indexed Representation

 The indexed representation defines a header as a match to a (name,
 value) pair in the header table. An indexed header is represented
 as:

 o An integer representing the index of the matching (name, value)
 pair, as described in Section 4.2.1.

3.4. Differential Coding

 A set of headers is encoded as a difference from the previous
 reference set of headers. The initial reference set of headers is
 the empty set.

 An indexed representation toggles the presence of the header in the
 current set of headers. If the header corresponding to the indexed

Peon & Ruellan Expires December 27, 2013 [Page 5]

Internet-Draft HTTP Header Compression June 2013

 representation was not in the set, it is added to the set. If the
 header index was in the set, it is removed from it.

 A literal representation adds a header to the current set of headers
 if the header is added to the header table (either by incremental
 indexing or by substitution indexing).

 To ensure a correct decoding of a set of headers, the following steps
 or equivalent ones MUST be executed by the decoder.

 First, upon starting the decoding of a new set of headers, the
 reference set of headers is interpreted into the working set of
 headers: for each header in the reference set, an entry is added to
 the working set, containing the header name, its value, and its
 current index in the header table.

 Then, the header representations are processed in their order of
 occurrence in the frame.

 For an indexed representation, the decoder checks whether the index
 is present in the working set. If true, the corresponding entry is
 removed from the working set. If several entries correspond to this
 encoded index, all these entries are removed from the working set.
 If the index is not present in the working set, it is used to
 retrieve the corresponding header from the header table, and a new
 entry is added to the working set representing this header.

 For a literal representation, a new entry is added to the working set
 representing this header. If the literal representation specifies
 that the header is to be indexed, the header is added accordingly to
 the header table, and its index is included in the entry in the
 working set. Otherwise, the entry in the working set contains an
 undefined index.

 When all the header representations have been processed, the working
 set contains all the headers of the set of headers.

 The new reference set of headers is computed by removing from the
 working set all the headers that are not present in the header table.

 It should be noted that during the decoding of the header
 representations, the same index may be associated to different
 headers in the working set and in the header table.

4. Detailed Format

4.1. Header Blocks

Peon & Ruellan Expires December 27, 2013 [Page 6]

Internet-Draft HTTP Header Compression June 2013

 A header block consists of a set of header fields, which are name-
 value pairs. Each header field is encoded using one of the header
 representation.

4.2. Low-level representations

4.2.1. Integer representation

 Integers are used to represent name indexes, pair indexes or string
 lengths. The integer representation keeps byte-alignment as much as
 possible as this allows various processing optimizations as well as
 efficient use of DEFLATE. For that purpose, an integer
 representation always finishes at the end of a byte.

 An integer is represented in two parts: a prefix that fills the
 current byte and an optional list of bytes that are used if the
 integer value does not fit in the prefix. The number of bits of the
 prefix (called N) is a parameter of the integer representation.

 The N-bit prefix allows filling the current byte. If the value is
 small enough (strictly less than 2^N-1), it is encoded within the
 N-bit prefix. Otherwise all the bits of the prefix are set to 1 and
 the value is encoded using an unsigned variable length integer [1]
 representation.

 The algorithm to represent an integer I is as follows:

 1. If I < 2^N - 1, encode I on N bits

 2. Else, encode 2^N - 1 on N bits and do the following steps:

 3.

 1. Set I to (I - (2^N - 1)) and Q to 1

 2. While Q > 0

 3.

 1. Compute Q and R, quotient and remainder of I divided by
 2^7

 2. If Q is strictly greater than 0, write one 1 bit;
 otherwise, write one 0 bit

 3. Encode R on the next 7 bits

 4. I = Q

Peon & Ruellan Expires December 27, 2013 [Page 7]

Internet-Draft HTTP Header Compression June 2013

4.2.1.1. Example 1: Encoding 10 using a 5-bit prefix

 The value 10 is to be encoded with a 5-bit prefix.

 o 10 is less than 31 (= 2^5 - 1) and is represented using the 5-bit
 prefix.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | X | X | X | 0 | 1 | 0 | 1 | 0 | 10 stored on 5 bits
 +---+---+---+---+---+---+---+---+

4.2.1.2. Example 2: Encoding 1337 using a 5-bit prefix

 The value I=1337 is to be encoded with a 5-bit prefix.

 o 1337 is greater than 31 (= 2^5 - 1).

 o

 * The 5-bit prefix is filled with its max value (31).

 o The value to represent on next bytes is I = 1337 - (2^5 - 1) =
 1306.

 o

 * 1306 = 128*10 + 26, i.e. Q=10 and R=26.

 * Q is greater than 1, bit 8 is set to 1.

 * The remainder R=26 is encoded on next 7 bits.

 * I is replaced by the quotient Q=10.

 o The value to represent on next bytes is I = 10.

 o

 * 10 = 128*0 + 10, i.e. Q=0 and R=10.

 * Q is equal to 0, bit 16 is set to 0.

 * The remainder R=10 is encoded on next 7 bits.

 * I is replaced by the quotient Q=0.

Peon & Ruellan Expires December 27, 2013 [Page 8]

Internet-Draft HTTP Header Compression June 2013

 o The process ends.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | X | X | X | 1 | 1 | 1 | 1 | 1 | Prefix = 31
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | Q>=1, R=26
 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Q=0 , R=10
 +---+---+---+---+---+---+---+---+

4.2.2. String literal representation

 Literal strings can represent header names or header values. They
 are encoded in two parts:

 1. The string length, defined as the number of bytes needed to store
 its UTF-8 representation, is represented as an integer with a
 zero bits prefix. If the string length is strictly less than
 128, it is represented as one byte.

 2. The string value represented as a list of UTF-8 characters.

4.3. Indexed Header Representation

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Index (7+) |
 +---+---------------------------+

 This representation starts with the '1' 1-bit prefix, followed by the
 index of the matching pair, represented as an integer with a 7-bit
 prefix.

4.4. Literal Header Representation

4.4.1. Literal Header without Indexing

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 1 | Index (5+) |
 +---+---+---+-------------------+

 This representation, which does not involve updating the header
 table, starts with the '011' 3-bit pattern.

Peon & Ruellan Expires December 27, 2013 [Page 9]

Internet-Draft HTTP Header Compression June 2013

 If the header name matches the header name of a (name, value) pair
 stored in the Header Table, the index of the pair increased by one
 (index + 1) is represented as an integer with a 5-bit prefix. Note
 that if the index is strictly below 31, one byte is used.

 If the header name does not match a header name entry, the value 0 is
 represented on 5 bits followed by the header name, represented as a
 literal string.

 Header name representation is followed by the header value
 represented as a literal string as described in Section 4.2.2.

4.4.2. Literal Header with Incremental Indexing

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 | Index (5+) |
 +---+---+---+-------------------+

 This representation starts with the '010' 3-bit pattern.

 If the header name matches the header name of a (name, value) pair
 stored in the Header Table, the index of the pair increased by one
 (index + 1) is represented as an integer with a 5-bit prefix. Note
 that if the index is strictly below 31, one byte is used.

 If the header name does not match a header name entry, the value 0 is
 represented on 5 bits followed by the header name, represented as a
 literal string.

 Header name representation is followed by the header value
 represented as a literal string as described in Section 4.2.2.

4.4.3. Literal Header with Substitution Indexing

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | Index (6+) |
 +---+---+-----------------------+

 This representation starts with the '00' 2-bit pattern.

 If the header name matches the header name of a (name, value) pair
 stored in the Header Table, the index of the pair increased by one
 (index + 1) is represented as an integer with a 6-bit prefix. Note
 that if the index is strictly below 62, one byte is used.

Peon & Ruellan Expires December 27, 2013 [Page 10]

Internet-Draft HTTP Header Compression June 2013

 If the header name does not match a header name entry, the value 0 is
 represented on 6 bits followed by the header name, represented as a
 literal string.

 The index of the substituted (name, value) pair is inserted after the
 header name representation as a 0-bit prefix integer.

 This index is followed by the header value represented as a literal
 string as described in Section 4.2.2.

5. Parameter Negotiation

 A few parameters can be used to accomodate client and server
 processing and memory requirements.

 SETTINGS_MAX_BUFFER_SIZE: Allows the sender to inform the remote
 endpoint of the maximum size it accepts for the header table.
 The default value is 4096 bytes.
 [[Is this default value OK? Do we need a maximum size? Do we
 want to allow infinite buffer?]]
 When the remote endpoint receives a SETTINGS frame containing a
 SETTINGS_MAX_BUFFER_SIZE setting with a value smaller than the one
 currently in use, it MUST send as soon as possible a HEADER frame
 with a stream identifier of 0x0 containing a value smaller than or
 equal to the received setting value.
 [[This changes slightly the behaviour of the HEADERS frame, which
 should be updated as follows:]]
 A HEADER frame with a stream identifier of 0x0 indicates that the
 sender has reduced the maximum size of the header table. The new
 maximum size of the header table is encoded on 32-bit. The
 decoder MUST reduce its own header table by dropping entries from
 it until the size of the header table is lower than or equal to
 the transmitted maximum size.

6. Security Considerations

 TODO?

7. IANA Considerations

 This memo includes no request to IANA.

8. Informative References

 [SPDY] Belshe, M. and R. Peon, "SPDY Protocol", February 2012,
 <http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy>.

http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy

Peon & Ruellan Expires December 27, 2013 [Page 11]

Internet-Draft HTTP Header Compression June 2013

Appendix A. Initial header names

 [[The tables in this section should be updated based on statistical
 analysis of header names frequency and specific HTTP 2.0 header rules
 (like removal of some headers).]]
 [[These tables are not adapted for headers contained in PUSH_PROMISE
 frames. Either the tables can be merged, or the table for responses
 can be updated.]]

A.1. Requests

 The following table lists the pre-defined headers that make-up the
 initial header table user to represent requests sent from a client to
 a server.

 +-------+---------------------+--------------+
 | Index | Header Name | Header Value |
 +-------+---------------------+--------------+
 | 0 | :scheme | http |
 | 1 | :scheme | https |
 | 2 | :host | |
 | 3 | :path | / |
 | 4 | :method | get |
 | 5 | accept | |
 | 6 | accept-charset | |
 | 7 | accept-encoding | |
 | 8 | accept-language | |
 | 9 | cookie | |
 | 10 | if-modified-since | |
 | 11 | keep-alive | |
 | 12 | user-agent | |
 | 13 | proxy-connection | |
 | 14 | referer | |
 | 15 | accept-datetime | |
 | 16 | authorization | |
 | 17 | allow | |
 | 18 | cache-control | |
 | 19 | connection | |
 | 20 | content-length | |
 | 21 | content-md5 | |
 | 22 | content-type | |
 | 23 | date | |
 | 24 | expect | |
 | 25 | from | |
 | 26 | if-match | |
 | 27 | if-none-match | |
 | 28 | if-range | |
 | 29 | if-unmodified-since | |

Peon & Ruellan Expires December 27, 2013 [Page 12]

Internet-Draft HTTP Header Compression June 2013

 | 30 | max-forwards | |
 | 31 | pragma | |
 | 32 | proxy-authorization | |
 | 33 | range | |
 | 34 | te | |
 | 35 | upgrade | |
 | 36 | via | |
 | 37 | warning | |
 +-------+---------------------+--------------+

 Table 1

A.2. Responses

 The following table lists the pre-defined headers that make-up the
 initial header table used to represent responses sent from a server
 to a client. The same header table is also used to represent request
 headers sent from a server to a client in a PUSH_PROMISE frame.

 +-------+-----------------------------+--------------+
 | Index | Header Name | Header Value |
 +-------+-----------------------------+--------------+
 | 0 | :status | 200 |
 | 1 | age | |
 | 2 | cache-control | |
 | 3 | content-length | |
 | 4 | content-type | |
 | 5 | date | |
 | 6 | etag | |
 | 7 | expires | |
 | 8 | last-modified | |
 | 9 | server | |
 | 10 | set-cookie | |
 | 11 | vary | |
 | 12 | via | |
 | 13 | access-control-allow-origin | |
 | 14 | accept-ranges | |
 | 15 | allow | |
 | 16 | connection | |
 | 17 | content-disposition | |
 | 18 | content-encoding | |
 | 19 | content-language | |
 | 20 | content-location | |
 | 21 | content-md5 | |
 | 22 | content-range | |
 | 23 | link | |
 | 24 | location | |
 | 25 | p3p | |

Peon & Ruellan Expires December 27, 2013 [Page 13]

Internet-Draft HTTP Header Compression June 2013

 | 26 | pragma | |
 | 27 | proxy-authenticate | |
 | 28 | refresh | |
 | 29 | retry-after | |
 | 30 | strict-transport-security | |
 | 31 | trailer | |
 | 32 | transfer-encoding | |
 | 33 | warning | |
 | 34 | www-authenticate | |
 +-------+-----------------------------+--------------+

 Table 2

Appendix B. Example

 Here is an example that illustrates different representations and how
 tables are updated. [[This section needs to be updated to integrate
 differential coding.]]

B.1. First header set

 The first header set to represent is the following:

 :path: /my-example/index.html
 user-agent: my-user-agent
 x-my-header: first

 The header table is empty, all headers are represented as literal
 headers with indexing. The 'x-my-header' header name is not in the
 header name table and is encoded literally. This gives the following
 representation:

 0x44 (literal header with incremental indexing, name index = 3)
 0x16 (header value string length = 22)
 /my-example/index.html
 0x4D (literal header with incremental indexing, name index = 12)
 0x0D (header value string length = 13)
 my-user-agent
 0x40 (literal header with incremental indexing, new name)
 0x0B (header name string length = 11)
 x-my-header
 0x05 (header value string length = 5)
 first

 The header table is as follows after the processing of these headers:

Peon & Ruellan Expires December 27, 2013 [Page 14]

Internet-Draft HTTP Header Compression June 2013

 Header table
 +---------+----------------+---------------------------+
 | Index | Header Name | Header Value |
 +---------+----------------+---------------------------+
 | 0 | :scheme | http |
 +---------+----------------+---------------------------+
 | 1 | :scheme | https |
 +---------+----------------+---------------------------+
 | ... | ... | ... |
 +---------+----------------+---------------------------+
 | 37 | warning | |
 +---------+----------------+---------------------------+
 | 38 | :path | /my-example/index.html | added header
 +---------+----------------+---------------------------+
 | 39 | user-agent | my-user-agent | added header
 +---------+----------------+---------------------------+
 | 40 | x-my-header | first | added header
 +---------+----------------+---------------------------+

 As all the headers in the first header set are indexed in the header
 table, all are kept in the reference set of headers, which is:

 Reference Set:
 :path, /my-example/index.html
 user-agent, my-user-agent
 x-my-header, first

B.2. Second header set

 The second header set to represent is the following:

 :path: /my-example/resources/script.js
 user-agent: my-user-agent
 x-my-header: second

 Comparing this second header set to the reference set, the first and
 third headers are from the reference set are not present in this
 second header set and must be removed. In addition, in this new set,
 the first and third headers have to be encoded. The path header is
 represented as a literal header with substitution indexing. The x
 -my-header will be represented as a literal header with incremental
 indexing.

 0xa6 (indexed header, index = 38: removal from reference set)
 0xa8 (indexed header, index = 40: removal from reference set)

Peon & Ruellan Expires December 27, 2013 [Page 15]

Internet-Draft HTTP Header Compression June 2013

 0x04 (literal header, substitution indexing, name index = 3)
 0x26 (replaced entry index = 38)
 0x1f (header value string length = 31)
 /my-example/resources/script.js
 0x5f 0x0a (literal header, incremental indexing, name index = 40)
 0x06 (header value string length = 6)
 second

 The header table is updated as follow:

 Header table
 +---------+----------------+---------------------------+
 | Index | Header Name | Header Value |
 +---------+----------------+---------------------------+
 | 0 | :scheme | http |
 +---------+----------------+---------------------------+
 | 1 | :scheme | https |
 +---------+----------------+---------------------------+
 | ... | ... | ... |
 +---------+----------------+---------------------------+
 | 37 | warning | |
 +---------+----------------+---------------------------+
 | 38 | :path | /my-example/resources/ | replaced
 | | | script.js | header
 +---------+----------------+---------------------------+
 | 39 | user-agent | my-user-agent |
 +---------+----------------+---------------------------+
 | 40 | x-my-header | first |
 +---------+----------------+---------------------------+
 | 41 | x-my-header | second | added header
 +---------+----------------+---------------------------+

 All the headers in this second header set are indexed in the header
 table, therefore, all are kept in the reference set of headers, which
 becomes:

 Reference Set:
 :path, /my-example/resources/script.js
 user-agent, my-user-agent
 x-my-header, second

Authors' Addresses

Peon & Ruellan Expires December 27, 2013 [Page 16]

Internet-Draft HTTP Header Compression June 2013

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

 Herve Ruellan
 Canon CRF

 EMail: herve.ruellan@crf.canon.fr

Peon & Ruellan Expires December 27, 2013 [Page 17]

