
CoRE Working Group A. Castellani
Internet-Draft University of Padova
Intended status: Informational S. Loreto
Expires: January 4, 2016 Ericsson
 A. Rahman
 InterDigital Communications, LLC
 T. Fossati
 Alcatel-Lucent
 E. Dijk
 Philips Research
 July 3, 2015

Guidelines for HTTP-CoAP Mapping Implementations
draft-ietf-core-http-mapping-07

Abstract

 This document provides reference information for implementing a proxy
 that performs translation between the HTTP protocol and the CoAP
 protocol, focusing on the reverse proxy case. It describes how a
 HTTP request is mapped to a CoAP request and how a CoAP response is
 mapped back to a HTTP response. Furthermore, it defines a template
 for URI mapping and provides a set of guidelines for HTTP to CoAP
 protocol translation and related proxy implementations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Castellani, et al. Expires January 4, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP-CoAP Mapping July 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. HTTP-CoAP Reverse Proxy 5
4. Use Cases . 6
5. URI Mapping . 7
5.1. URI Terminology . 8
5.2. Default Mapping . 8
5.2.1. Optional Scheme Omission 8
5.2.2. Encoding Caveats 9

5.3. URI Mapping Template 9
5.3.1. Simple Form . 9
5.3.2. Enhanced Form . 11

5.4. Discovery . 13
5.4.1. Discovering CoAP Resources 13
5.4.2. Examples . 14

6. Media Type Mapping . 15
6.1. Overview . 15
6.2. 'application/coap-payload' Media Type 17
6.3. Loose Media Type Mapping 17
6.4. Media Type to Content Format Mapping Algorithm 18
6.5. Content Transcoding 19
6.5.1. General . 19
6.5.2. CoRE Link Format 20
6.5.3. Diagnostic Messages 20

7. Response Code Mapping . 20
8. Additional Mapping Guidelines 23
8.1. Caching and Congestion Control 23
8.2. Cache Refresh via Observe 23
8.3. Use of CoAP Blockwise Transfer 24
8.4. Security Translation 25
8.5. CoAP Multicast . 25
8.6. Timeouts . 26
8.7. Miscellaneous . 26

9. IANA Considerations . 26
9.1. New 'core.hc' Resource Type 26
9.2. New 'coap-payload' Internet Media Type 27

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Castellani, et al. Expires January 4, 2016 [Page 2]

Internet-Draft HTTP-CoAP Mapping July 2015

10. Security Considerations 28
10.1. Traffic Overflow . 29
10.2. Handling Secured Exchanges 29
10.3. Proxy and CoAP Server Resource Exhaustion 30
10.4. URI Mapping . 30

11. Acknowledgements . 31
12. References . 31
12.1. Normative References 31
12.2. Informative References 32

Appendix A. Change Log . 33
 Authors' Addresses . 35

1. Introduction

 CoAP [RFC7252] has been designed with the twofold aim to be an
 application protocol specialized for constrained environments and to
 be easily used in REST architectures such as the Web. The latter
 goal has led to define CoAP to easily interoperate with HTTP
 [RFC7230] through an intermediary proxy which performs cross-protocol
 conversion.

Section 10 of [RFC7252] describes the fundamentals of the CoAP-to-
 HTTP and the HTTP-to-CoAP cross-protocol mapping process. However,
 implementing such a cross-protocol proxy can be complex, and many
 details regarding its internal procedures and design choices require
 further elaboration. Therefore, a first goal of this document is to
 provide more detailed information to proxy designers and
 implementers, to help build proxies that correctly inter-work with
 existing CoAP and HTTP implementations.

 The second goal of this informational document is to define a
 consistent set of guidelines that a HTTP-to-CoAP proxy implementation
 MAY adhere to. The main reason for adhering to such guidelines is to
 reduce variation between proxy implementations, thereby increasing
 interoperability. (For example, a proxy conforming to these
 guidelines made by vendor A can be easily replaced by a proxy from
 vendor B that also conforms to the guidelines.)

 This document is organized as follows:

 o Section 2 describes terminology to identify proxy types, mapping
 approaches and proxy deployments;

 o Section 3 introduces the reverse HTTP-CoAP proxy;

 o Section 4 lists use cases in which HTTP clients need to contact
 CoAP servers;

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252#section-10

Castellani, et al. Expires January 4, 2016 [Page 3]

Internet-Draft HTTP-CoAP Mapping July 2015

 o Section 5 introduces a default HTTP-to-CoAP URI mapping syntax;

 o Section 6 describes how to map HTTP media types to CoAP content
 formats and vice versa;

 o Section 7 describes how to map CoAP responses to HTTP responses;

 o Section 8 describes additional mapping guidelines related to
 caching, congestion, timeouts and CoAP blockwise
 [I-D.ietf-core-block] transfers;

 o Section 10 discusses possible security impact of HTTP-CoAP
 protocol mapping.

2. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 HC Proxy: a proxy performing a cross-protocol mapping, in the context
 of this document a HTTP-CoAP mapping. A Cross-Protocol Proxy can
 behave as a Forward Proxy, Reverse Proxy or Interception Proxy. In
 this document we focus on the Reverse Proxy case.

 Forward Proxy: a message forwarding agent that is selected by the
 client, usually via local configuration rules, to receive requests
 for some type(s) of absolute URI and to attempt to satisfy those
 requests via translation to the protocol indicated by the absolute
 URI. The user decides (is willing to) use the proxy as the
 forwarding/de-referencing agent for a predefined subset of the URI
 space. In [RFC7230] this is called a Proxy. [RFC7252] defines
 Forward-Proxy similarly.

 Reverse Proxy: as in [RFC7230], a receiving agent that acts as a
 layer above some other server(s) and translates the received requests
 to the underlying server's protocol. A Reverse HC Proxy behaves as
 an origin (HTTP) server on its connection towards the (HTTP) client
 and as a (CoAP) client on its connection towards the (CoAP) origin
 server. The (HTTP) client uses the "origin-form" (Section 5.3.1 of
 [RFC7230]) as a request-target URI.

 Interception Proxy [RFC3040]: a proxy that receives inbound traffic
 flows through the process of traffic redirection; transparent to the
 client.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc7230#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc3040

Castellani, et al. Expires January 4, 2016 [Page 4]

Internet-Draft HTTP-CoAP Mapping July 2015

 Placement terms: a Server-Side proxy is placed in the same network
 domain as the server; conversely a Client-Side proxy is placed in the
 same network domain as the client. In any other case, the proxy is
 said to be External.

 Note that a Reverse Proxy appears to a client as an origin server
 while a Forward Proxy does not, so, when communicating with a Reverse
 Proxy a client may be unaware it is communicating with a proxy at
 all.

3. HTTP-CoAP Reverse Proxy

 A Reverse HTTP-CoAP Proxy (HC proxy) is accessed by clients only
 supporting HTTP, and handles their HTTP requests by mapping these to
 CoAP requests, which are forwarded to CoAP servers; mapping back
 received CoAP responses to HTTP responses. This mechanism is
 transparent to the client, which may assume that it is communicating
 with the intended target HTTP server. In other words, the client
 accesses the proxy as an origin server using the "origin-form"
 (Section 5.3.1 of [RFC7230]) as a request target.

 See Figure 1 for an example deployment scenario. Here an HC Proxy is
 placed server-side, at the boundary of the Constrained Network
 domain, to avoid any HTTP traffic on the Constrained Network and to
 avoid any (unsecured) CoAP multicast traffic outside the Constrained
 Network. The DNS server is used by the HTTP Client to resolve the IP
 address of the HC Proxy and optionally also by the HC Proxy to
 resolve IP addresses of CoAP servers.

Castellani, et al. Expires January 4, 2016 [Page 5]

https://datatracker.ietf.org/doc/html/rfc7230#section-5.3.1

Internet-Draft HTTP-CoAP Mapping July 2015

 Constrained Network
 .-------------------.
 / .------. \
 / | CoAP | \
 / |server| \
 || '------' ||
 || ||
 .--------. HTTP Request .-----------. CoAP Req .------. ||
 | HTTP |----------------->| HTTP-CoAP |----------->| CoAP | ||
 | Client |<-----------------| Proxy |<-----------|Server| ||
 '--------' HTTP Response '-----------' CoAP Resp '------' ||
 || || | |
 || .------. ||
 || | CoAP | ||
 \ |server| .------. /
 \ '------' | CoAP | /
 \ |server| /
 \ '------' /
 '-----------------'

 Figure 1: Reverse Cross-Protocol Proxy Deployment Scenario

 Other placement options for the HC Proxy (not shown) are client-side,
 which is in the same domain as the HTTP Client; or external, which is
 both outside the HTTP Client's domain and the CoAP servers' domain.

 Normative requirements on the translation of HTTP requests to CoAP
 requests and of the CoAP responses back to HTTP responses are defined
 in Section 10.2 of [RFC7252]. However, that section only considers
 the case of a Forward HC Proxy in which a client explicitly indicates
 it targets a request to a CoAP server, and does not cover all aspects
 of proxy implementation in detail. This document provides guidelines
 and more details for the implementation of a Reverse HC Proxy, which
 MAY be followed in addition to the normative requirements. Note that
 most of the guidelines also apply to an Intercepting HC Proxy.

4. Use Cases

 To illustrate in which situations HTTP to CoAP protocol translation
 may be used, three use cases are described below.

 1. Smartphone and home sensor: A smartphone can access directly a
 CoAP home sensor using an authenticated 'https' request, if its home
 router contains an HC proxy. An HTML5 application on the smartphone
 can provide a friendly UI to the user using standard (HTTP)
 networking functions of HTML5.

https://datatracker.ietf.org/doc/html/rfc7252#section-10.2

Castellani, et al. Expires January 4, 2016 [Page 6]

Internet-Draft HTTP-CoAP Mapping July 2015

 2. Legacy building control application without CoAP: A building
 control application that uses HTTP but not CoAP, can check the status
 of CoAP sensors and/or actuators via an HC proxy.

 3. Making sensor data available to 3rd parties: For demonstration or
 public interest purposes, a HC proxy may be configured to expose the
 contents of a CoAP sensor to the world via the web (HTTP and/or
 HTTPS). Some sensors might only handle secure 'coaps' requests,
 therefore the proxy is configured to translate any request to a
 'coaps' secured request. The HC proxy is furthermore configured to
 only pass through GET requests in order to protect the constrained
 network. In this way even unattended HTTP clients, such as web
 crawlers, may index sensor data as regular web pages.

5. URI Mapping

 Though, in principle, a CoAP URI could be directly used by a HTTP
 user agent to de-reference a CoAP resource through an HC proxy, the
 reality is that all major web browsers, networking libraries and
 command line tools do not allow making HTTP requests using URIs with
 a scheme "coap" or "coaps".

 Thus, there is a need for web applications to "pack" a CoAP URI into
 a HTTP URI so that it can be (non-destructively) transported from the
 user agent to the HC proxy. The HC proxy can then "unpack" the CoAP
 URI and finally de-reference it via a CoAP request to the target
 Server.

 URI Mapping is the process through which the URI of a CoAP resource
 is transformed into an HTTP URI so that:

 o the requesting HTTP user agent can handle it;

 o the receiving HC proxy can extract the intended CoAP URI
 unambiguously.

 To this end, the remainder of this section will identify:

 o the default mechanism to map a CoAP URI into a HTTP URI;

 o the URI template format to express a class of CoAP-HTTP URI
 mapping functions;

 o the discovery mechanism based on CoRE Link Format [RFC6690]
 through which clients of an HC proxy can dynamically discover
 information about the supported URI Mapping Template(s), as well
 as the base URI where the HC proxy function is anchored.

https://datatracker.ietf.org/doc/html/rfc6690

Castellani, et al. Expires January 4, 2016 [Page 7]

Internet-Draft HTTP-CoAP Mapping July 2015

5.1. URI Terminology

 In the remainder of this section, the following terms will be used
 with a distinctive meaning:

 Target CoAP URI:
 URI which refers to the (final) CoAP resource that has to be
 de-referenced. It conforms to syntax defined in Section 6 of
 [RFC7252]. Specifically, its scheme is either "coap" or
 "coaps".

 Hosting HTTP URI:
 URI that conforms to syntax in Section 2.7 of [RFC7230]. Its
 authority component refers to an HC proxy, whereas path (and
 query) component(s) embed the information used by an HC proxy
 to extract the Target CoAP URI.

5.2. Default Mapping

 The default mapping is for the Target CoAP URI to be appended as-is
 to a base URI provided by the HC proxy, to form the Hosting HTTP URI.

 For example: given a base URI http://p.example.com/hc and a Target
 CoAP URI coap://s.example.com/light, the resulting Hosting HTTP URI
 would be http://p.example.com/hc/coap://s.example.com/light.

 Provided a correct Target CoAP URI, the Hosting HTTP URI resulting
 from the default mapping is always syntactically correct.
 Furthermore, the Target CoAP URI can always be extracted
 unambiguously from the Hosting HTTP URI. Also, it is worth noting
 that, using the default mapping, a query component in the target CoAP
 resource URI is naturally encoded into the query component of the
 Hosting URI, e.g.: coap://s.example.com/light?dim=5 becomes
 http://p.example.com/hc/coap://s.example.com/light?dim=5.

 There is no default for the base URI. Therefore, it is either known
 in advance, e.g. as a configuration preset, or dynamically discovered
 using the mechanism described in Section 5.4.

 The default URI mapping function is RECOMMENDED to be implemented and
 activated by default in an HC proxy, unless there are valid reasons,
 e.g. application specific, to use a different mapping function.

5.2.1. Optional Scheme Omission

 When found in a Hosting HTTP URI, the scheme (i.e., "coap" or
 "coaps"), the scheme component delimiter (":"), and the double slash

https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc7252#section-6
https://datatracker.ietf.org/doc/html/rfc7230#section-2.7

Castellani, et al. Expires January 4, 2016 [Page 8]

Internet-Draft HTTP-CoAP Mapping July 2015

 ("//") preceding the authority MAY be omitted. In such case, a local
 default - not defined by this document - applies.

 So, http://p.example.com/hc/s.coap.example.com/foo could either
 represent the target coap://s.coap.example.com/foo or
 coaps://s.coap.example.com/foo depending on application specific
 presets.

5.2.2. Encoding Caveats

 When the authority of the Target CoAP URI is given as an IPv6address,
 then the surrounding square brackets MUST be percent-encoded in the
 Hosting HTTP URI, in order to comply with the syntax defined in

Section 3.3. of [RFC3986] for a URI path segment. E.g.:
 coap://[2001:db8::1]/light?on becomes
 http://p.example.com/hc/coap://%5B2001:db8::1%5D/light?on.

 Everything else can be safely copied verbatim from the Target CoAP
 URI to the Hosting HTTP URI.

5.3. URI Mapping Template

 This section defines a format for the URI template [RFC6570] used by
 an HC proxy to inform its clients about the expected syntax for the
 Hosting HTTP URI.

 When instantiated, an URI Mapping Template is always concatenated to
 a base URI provided by the HC proxy via discovery (see Section 5.4),
 or by other means.

 A simple form (Section 5.3.1) and an enhanced form (Section 5.3.2)
 are provided to fit different users' requirements.

 Both forms are expressed as level 2 URI templates [RFC6570] to take
 care of the expansion of values that are allowed to include reserved
 URI characters. The syntax of all URI formats is specified in this
 section in Augmented Backus-Naur Form (ABNF) [RFC5234].

5.3.1. Simple Form

 The simple form MUST be used for mappings where the Target CoAP URI
 is going to be copied (using rules of Section 5.2.2) at some fixed
 position into the Hosting HTTP URI.

 The following template variables MUST be used in mutual exclusion in
 a template definition:

https://datatracker.ietf.org/doc/html/rfc3986#section-3.3
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc5234

Castellani, et al. Expires January 4, 2016 [Page 9]

Internet-Draft HTTP-CoAP Mapping July 2015

 cu = coap-URI ; from [RFC7252], Section 6.1
 su = coaps-URI ; from [RFC7252], Section 6.2
 tu = cu / su

 The same considerations as in Section 5.2.1 apply, in that the CoAP
 scheme may be omitted from the Hosting HTTP URI.

5.3.1.1. Examples

 All the following examples (given as a specific URI mapping template,
 a Target CoAP URI, and the produced Hosting HTTP URI) use
 http://p.example.com/hc as the base URI. Note that these examples
 all define mapping templates that deviate from the default template
 of Section 5.2 to be able to illustrate the use of the above template
 variables.

 1. "coap" URI is a query argument of the Hosting HTTP URI:

 ?coap_target_uri={+cu}

 coap://s.example.com/light

 http://p.example.com/hc?coap_target_uri=coap://s.example.com/light

 2. "coaps" URI is a query argument of the Hosting HTTP URI:

 ?coaps_target_uri={+su}

 coaps://s.example.com/light

 http://p.example.com/hc?coaps_target_uri=coaps://s.example.com/light

 3. Target CoAP URI as a query argument of the Hosting HTTP URI:

Castellani, et al. Expires January 4, 2016 [Page 10]

https://datatracker.ietf.org/doc/html/rfc7252#section-6.1
https://datatracker.ietf.org/doc/html/rfc7252#section-6.2

Internet-Draft HTTP-CoAP Mapping July 2015

 ?target_uri={+tu}

 coap://s.example.com/light

 http://p.example.com/hc?target_uri=coap://s.example.com/light

 or

 coaps://s.example.com/light

 http://p.example.com/hc?target_uri=coaps://s.example.com/light

 4. Target CoAP URI in the path component of the Hosting HTTP URI
 (i.e., the default URI Mapping template):

 /{+tu}

 coap://s.example.com/light

 http://p.example.com/hc/coap://s.example.com/light

 or

 coaps://s.example.com/light

 http://p.example.com/hc/coaps://s.example.com/light

 5. "coap" URI is a query argument of the Hosting HTTP URI; client
 decides to omit scheme because a default scheme is agreed
 beforehand between client and proxy:

 ?coap_uri={+cu}

 coap://s.example.com/light

 http://p.example.com/hc?coap_uri=s.example.com/light

5.3.2. Enhanced Form

 The enhanced form can be used to express more sophisticated mappings,
 i.e., those that do not fit into the simple form.

Castellani, et al. Expires January 4, 2016 [Page 11]

Internet-Draft HTTP-CoAP Mapping July 2015

 There MUST be at most one instance of each of the following template
 variables in a template definition:

 s = "coap" / "coaps" ; from [RFC7252], Sections 6.1 and 6.2
 hp = host [":" port] ; from [RFC3986] Sections 3.2.2 and 3.2.3
 p = path-abempty ; from [RFC3986] Section 3.3
 q = query ; from [RFC3986] Section 3.4
 qq = ["?" query] ; qq is empty iff 'query' is empty

5.3.2.1. Examples

 All the following examples (given as a specific URI mapping template,
 a Target CoAP URI, and the produced Hosting HTTP URI) use
 http://p.example.com/hc as the base URI.

 1. Target CoAP URI components in path segments, and optional query
 in query component:

 {+s}{+hp}{+p}{+qq}

 coap://s.example.com/light

 http://p.example.com/hc/coap/s.example.com/light

 or

 coap://s.example.com/light?on

 http://p.example.com/hc/coap/s.example.com/light?on

 2. Target CoAP URI components split in individual query arguments:

Castellani, et al. Expires January 4, 2016 [Page 12]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-3.3
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4

Internet-Draft HTTP-CoAP Mapping July 2015

 ?s={+s}&hp={+hp}&p={+p}&q={+q}

 coap://s.example.com/light

 http://p.example.com/hc?s=coap&hp=s.example.com&p=/light&q=

 or

 coaps://s.example.com/light?on

 http://p.example.com/hc?s=coaps&hp=s.example.com&p=/light&q=on

5.4. Discovery

 In order to accommodate site specific needs while allowing third
 parties to discover the proxy function, the HC proxy SHOULD publish
 information related to the location and syntax of the HC proxy
 function using the CoRE Link Format [RFC6690] interface.

 To this aim a new Resource Type, "core.hc", is defined in this
 document. It is associated with a base URI, and can be used as the
 value for the "rt" attribute in a query to the /.well-known/core in
 order to locate the base URI where the HC proxy function is anchored.

 Along with it, the new target attribute "hct" is defined in this
 document. This attribute MAY be returned in a "core.hc" link to
 provide the URI Mapping Template associated to the mapping resource.
 The default template given in Section 5.2, i.e., {+tu}, MUST be
 assumed if no "hct" attribute is found in the returned link. If a
 "hct" attribute is present in the returned link, then a compliant
 client MUST use it to create the Hosting HTTP URI.

 Discovery as specified in [RFC6690] SHOULD be available on both the
 HTTP and the CoAP side of the HC proxy, with one important
 difference: on the CoAP side the link associated to the "core.hc"
 resource needs an explicit anchor referring to the HTTP origin, while
 on the HTTP interface the link context is already the HTTP origin
 carried in the request's Host header, and doesn't have to be made
 explicit.

5.4.1. Discovering CoAP Resources

 For a HTTP client, it may be unknown which CoAP resources are
 available through a HC Proxy. By default an HC Proxy does not
 support a method to discover all CoAP resources. However, if an HC
 Proxy is integrated with a Resource Directory
 ([I-D.ietf-core-resource-directory]) function, an HTTP client can

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690

Castellani, et al. Expires January 4, 2016 [Page 13]

Internet-Draft HTTP-CoAP Mapping July 2015

 discover all CoAP resources of its interest by doing an RD Lookup to
 the HC Proxy, via HTTP. This is possible because a single RD can
 support both CoAP and HTTP interfaces simultaneously. Of course the
 HTTP client will this way only discover resources that have been
 previously registered onto this RD by CoAP devices.

5.4.2. Examples

 o The first example exercises the CoAP interface, and assumes that
 the default template, {+tu}, is used:

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.hc

 Res: 2.05 Content
 </hc>;anchor="http://p.example.com";rt="core.hc"

 o The second example - also on the CoAP side of the HC proxy - uses
 a custom template, i.e., one where the CoAP URI is carried inside
 the query component, thus the returned link carries the URI
 template to be used in an explicit "hct" attribute:

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.hc

 Res: 2.05 Content
 </hc>;anchor="http://p.example.com";
 rt="core.hc";hct="?uri={+tu}"

 On the HTTP side, link information can be serialized in more than one
 way:

 o using the 'application/link-format' content type:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format
 Content-Length: 18

 </hc>;rt="core.hc"

Castellani, et al. Expires January 4, 2016 [Page 14]

Internet-Draft HTTP-CoAP Mapping July 2015

 o using the 'application/link-format+json' content type as defined
 in [I-D.bormann-core-links-json]:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format+json
 Content-Length: 31

 [{"href":"/hc","rt":"core.hc"}]

 o using the Link header:

 Req: GET /.well-known/core?rt=core.hc HTTP/1.1
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Link: </hc>;rt="core.hc"

 o An HC proxy may expose two different base URIs to differentiate
 between Target CoAP resources in the "coap" and "coaps" scheme:

 Req: GET /.well-known/core?rt=core.hc
 Host: p.example.com

 Res: HTTP/1.1 200 OK
 Content-Type: application/link-format+json
 Content-Length: 111

 [
 {"href":"/hc/plaintext","rt":"core.hc","hct":"{+cu}"},
 {"href":"/hc/secure","rt":"core.hc","hct":"{+su}"}
]

6. Media Type Mapping

6.1. Overview

 An HC proxy needs to translate HTTP media types (Section 3.1.1.1 of
 [RFC7231]) and content encodings (Section 3.1.2.2 of [RFC7231]) into
 CoAP content formats (Section 12.3 of [RFC7252]) and vice versa.

Castellani, et al. Expires January 4, 2016 [Page 15]

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2.2
https://datatracker.ietf.org/doc/html/rfc7252#section-12.3

Internet-Draft HTTP-CoAP Mapping July 2015

 Media type translation can happen in GET, PUT or POST requests going
 from HTTP to CoAP, and in 2.xx (i.e., successful) responses going
 from CoAP to HTTP. Specifically, PUT and POST need to map both the
 Content-Type and Content-Encoding HTTP headers into a single CoAP
 Content-Format option, whereas GET needs to map Accept and Accept-
 Encoding HTTP headers into a single CoAP Accept option. To generate
 the HTTP response, the CoAP Content-Format option is mapped back to a
 suitable HTTP Content-Type and Content-Encoding combination.

 An HTTP request carrying a Content-Type and Content-Encoding
 combination which the HC proxy is unable to map to an equivalent CoAP
 Content-Format, SHALL elicit a 415 (Unsupported Media Type) response
 by the HC proxy.

 On the content negotiation side, failure to map Accept and Accept-*
 headers SHOULD be silently ignored: the HC proxy SHOULD therefore
 forward as a CoAP request with no Accept option. The HC proxy thus
 disregards the Accept/Accept-* header fields by treating the response
 as if it is not subject to content negotiation, as mentioned in
 Sections 5.3.* of [RFC7231]. However, an HC proxy implementation is
 free to attempt mapping a single Accept header in a GET request to
 multiple CoAP GET requests, each with a single Accept option, which
 are then tried in sequence until one succeeds. Note that an HTTP
 Accept */* MUST be mapped to a CoAP request without Accept option.

 While the CoAP to HTTP direction has always a well defined mapping
 (with the exception examined in Section 6.2), the HTTP to CoAP
 direction is more problematic because the source set, i.e.,
 potentially 1000+ IANA registered media types, is much bigger than
 the destination set, i.e., the mere 6 values initially defined in

Section 12.3 of [RFC7252].

 Depending on the tight/loose coupling with the application(s) for
 which it proxies, the HC proxy could implement different media type
 mappings.

 When tightly coupled, the HC proxy knows exactly which content
 formats are supported by the applications, and can be strict when
 enforcing its forwarding policies in general, and the media type
 mapping in particular.

 On the other side, when the HC proxy is a general purpose application
 layer gateway, being too strict could significantly reduce the amount
 of traffic that it'd be able to successfully forward. In this case,
 the "loose" media type mapping detailed in Section 6.3 MAY be
 implemented.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252#section-12.3

Castellani, et al. Expires January 4, 2016 [Page 16]

Internet-Draft HTTP-CoAP Mapping July 2015

 The latter grants more evolution of the surrounding ecosystem, at the
 cost of allowing more attack surface. In fact, as a result of such
 strategy, payloads would be forwarded more liberally across the
 unconstrained/constrained network boundary of the communication path.
 Therefore, when applied, other forms of access control must be set in
 place to avoid unauthorized users to deplete or abuse systems and
 network resources.

6.2. 'application/coap-payload' Media Type

 If the HC proxy receives a CoAP response with a Content-Format that
 it does not recognize (e.g. because the value has been registered
 after the proxy has been deployed, or the CoAP server uses an
 experimental value which is not registered), then the HC proxy SHALL
 return a generic "application/coap-payload" media type with numeric
 parameter "cf" as defined in Section 9.2.

 For example, the CoAP content format '60' ("application/cbor") would
 be represented by "application/coap-payload;cf=60", would '60' be an
 unknown content format to the HC Proxy.

 A HTTP client MAY use the media type "application/coap-payload" as a
 means to send a specific content format to a CoAP server via an HC
 Proxy if the client has determined that the HC Proxy does not
 directly support the type mapping it needs. This case may happen
 when dealing for example with newly registered, yet to be registered,
 or experimental CoAP content formats.

6.3. Loose Media Type Mapping

 By structuring the type information in a super-class (e.g. "text")
 followed by a finer grained sub-class (e.g. "html"), and optional
 parameters (e.g. "charset=utf-8"), Internet media types provide a
 rich and scalable framework for encoding the type of any given
 entity.

 This approach is not applicable to CoAP, where Content Formats
 conflate an Internet media type (potentially with specific
 parameters) and a content encoding into one small integer value.

 To remedy this loss of flexibility, we introduce the concept of a
 "loose" media type mapping, where media types that are
 specializations of a more generic media type can be aliased to their
 super-class and then mapped (if possible) to one of the CoAP content
 formats. For example, "application/soap+xml" can be aliased to
 "application/xml", which has a known conversion to CoAP. In the
 context of this "loose" media type mapping, "application/octet-

Castellani, et al. Expires January 4, 2016 [Page 17]

Internet-Draft HTTP-CoAP Mapping July 2015

 stream" can be used as a fallback when no better alias is found for a
 specific media type.

 Table 1 defines the default lookup table for the "loose" media type
 mapping. Given an input media type, the table returns its best
 generalized media type using the most specific match i.e. the table
 entries are compared to the input in top to bottom order until an
 entry matches.

 +---------------------+--------------------------+
 | Internet media type | Generalized media type |
 +---------------------+--------------------------+
 | application/*+xml | application/xml |
 | application/*+json | application/json |
 | text/xml | application/xml |
 | text/* | text/plain |
 | */* | application/octet-stream |
 +---------------------+--------------------------+

 Table 1: Media type generalization lookup table

 The "loose" media type mapping is an OPTIONAL feature.
 Implementations supporting this kind of mapping SHOULD provide a
 flexible way to define the set of media type generalizations allowed.

6.4. Media Type to Content Format Mapping Algorithm

 This section defines the algorithm used to map an HTTP Internet media
 type to its correspondent CoAP content format.

 The algorithm uses the mapping table defined in Section 12.3 of
 [RFC7252] plus, possibly, any locally defined extension of it.
 Optionally, the table and lookup mechanism described in Section 6.3
 can be used if the implementation chooses so.

 Note that the algorithm may have side effects on the associated
 representation (see also Section 6.5).

 In the following:

 o C-T, C-E, and C-F stand for the values of the Content-Type (or
 Accept) HTTP header, Content-Encoding (or Accept-Encoding) HTTP
 header, and Content-Format CoAP option respectively.

 o If C-E is not given it is assumed to be "identity".

 o MAP is the mandatory lookup table, GMAP is the optional
 generalized table.

https://datatracker.ietf.org/doc/html/rfc7252#section-12.3
https://datatracker.ietf.org/doc/html/rfc7252#section-12.3

Castellani, et al. Expires January 4, 2016 [Page 18]

Internet-Draft HTTP-CoAP Mapping July 2015

 INPUT: C-T and C-E
 OUTPUT: C-F or Fail

 1. if no C-T: return Fail
 2. C-F = MAP[C-T, C-E]
 3. if C-F is not None: return C-F
 4. if C-E is not "identity":
 5. if C-E is supported (e.g. gzip):
 6. decode the representation accordingly
 7. set C-E to "identity"
 8. else:
 9. return Fail
 10. repeat steps 2. and 3.
 11. if C-T allows a non-lossy transformation into \
 12. one of the supported C-F:
 13. transcode the representation accordingly
 14. return C-F
 15. if GMAP is defined:
 16. C-F = GMAP[C-T]
 17. if C-F is not None: return C-F
 18. return Fail

 Figure 2

6.5. Content Transcoding

6.5.1. General

 Payload content transcoding (e.g. see steps 11-14 of Figure 2) is an
 OPTIONAL feature. Implementations supporting this feature should
 provide a flexible way to define the set of transcodings allowed.

 As noted in Section 6.4, the process of mapping the media type can
 have side effects on the forwarded entity body. This may be caused
 by the removal or addition of a specific content encoding, or because
 the HC proxy decides to transcode the representation to a different
 (compatible) format. The latter proves useful when an optimized
 version of a specific format exists. For example an XML-encoded
 resource could be transcoded to Efficient XML Interchange (EXI)
 format, or a JSON-encoded resource into CBOR [RFC7049], effectively
 achieving compression without losing any information.

 However, it should be noted that in certain cases, transcoding can
 lose information in a non-obvious manner. For example, encoding an
 XML document using schema-informed EXI encoding leads to a loss of
 information when the destination does not know the exact schema
 version used by the encoder, which means that whenever the HC proxy
 transcodes an application/XML to application/EXI in-band metadata

https://datatracker.ietf.org/doc/html/rfc7049

Castellani, et al. Expires January 4, 2016 [Page 19]

Internet-Draft HTTP-CoAP Mapping July 2015

 could be lost. Therefore, the implementer should always carefully
 verify such lossy payload transformations before triggering the
 transcoding.

6.5.2. CoRE Link Format

 The CoRE Link Format [RFC6690] is a set of links (i.e., URIs and
 their formal relationships) which is carried as content payload in a
 CoAP response. These links usually include CoAP URIs that might be
 translated by the HC proxy to the correspondent HTTP URIs using the
 implemented URI mapping function (see Section 5). Such a process
 would inspect the forwarded traffic and attempt to re-write the body
 of resources with an application/link-format media type, mapping the
 embedded CoAP URIs to their HTTP counterparts. Some potential issues
 with this approach are:

 1. The client may be interested to retrieve original (unaltered)
 CoAP payloads through the HC proxy, not modified versions.

 2. Tampering with payloads is incompatible with resources that are
 integrity protected (although this is a problem with transcoding
 in general).

 3. The HC proxy needs to fully understand [RFC6690] syntax and
 semantics, otherwise there is an inherent risk to corrupt the
 payloads.

 Therefore, CoRE Link Format payload should only be transcoded at the
 risk and discretion of the proxy implementer.

6.5.3. Diagnostic Messages

 CoAP responses may, in certain error cases, contain a diagnostic
 message in the payload explaining the error situation, as described
 in Section 5.5.2 of [RFC7252]. In this scenario, the CoAP response
 diagnostic payload MUST NOT be returned as the regular HTTP payload
 (message body). Instead, the CoAP diagnostic payload must be used as
 the HTTP reason-phrase of the HTTP status line, as defined in

Section 3.1.2 of [RFC7230], without any alterations, except those
 needed to comply to the reason-phrase ABNF definition.

7. Response Code Mapping

 Table 2 defines the HTTP response status codes to which each CoAP
 response code SHOULD be mapped. This table complies with the
 requirements in Section 10.2 of [RFC7252] and is intended to cover
 all possible cases. Multiple appearances of a HTTP status code in
 the second column indicates multiple equivalent HTTP responses are

https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7252#section-5.5.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.1.2
https://datatracker.ietf.org/doc/html/rfc7252#section-10.2

Castellani, et al. Expires January 4, 2016 [Page 20]

Internet-Draft HTTP-CoAP Mapping July 2015

 possible based on the same CoAP response code, depending on the
 conditions cited in the Notes (third column and text below table).

 +-----------------------------+-----------------------------+-------+
 | CoAP Response Code | HTTP Status Code | Notes |
 +-----------------------------+-----------------------------+-------+
2.01 Created	201 Created	1
2.02 Deleted	200 OK	2
	204 No Content	2
2.03 Valid	304 Not Modified	3
	200 OK	4
2.04 Changed	200 OK	2
	204 No Content	2
2.05 Content	200 OK	
4.00 Bad Request	400 Bad Request	
4.01 Unauthorized	401 Unauthorized	5
4.02 Bad Option	400 Bad Request	6
4.03 Forbidden	403 Forbidden	
4.04 Not Found	404 Not Found	
4.05 Method Not Allowed	400 Bad Request	7
4.06 Not Acceptable	406 Not Acceptable	
4.12 Precondition Failed	412 Precondition Failed	
4.13 Request Ent. Too Large	413 Request Repr. Too Large	
4.15 Unsupported Media Type	415 Unsupported Media Type	
5.00 Internal Server Error	500 Internal Server Error	
5.01 Not Implemented	501 Not Implemented	
5.02 Bad Gateway	502 Bad Gateway	
5.03 Service Unavailable	503 Service Unavailable	8
5.04 Gateway Timeout	504 Gateway Timeout	
5.05 Proxying Not Supported	502 Bad Gateway	9
 +-----------------------------+-----------------------------+-------+

 Table 2: CoAP-HTTP Response Code Mappings

 Notes:

 1. A CoAP server may return an arbitrary format payload along with
 this response. This payload SHOULD be returned as entity in the
 HTTP 201 response. Section 7.3.2 of [RFC7231] does not put any
 requirement on the format of the entity. (In the past, [RFC2616]
 did.)

 2. The HTTP code is 200 or 204 respectively for the case that a CoAP
 server returns a payload or not. [RFC7231] Section 5.3 requires
 code 200 in case a representation of the action result is
 returned for DELETE/POST/PUT, and code 204 if not. Hence, a
 proxy SHOULD transfer any CoAP payload contained in a CoAP 2.02
 response to the HTTP client using a 200 OK response.

https://datatracker.ietf.org/doc/html/rfc7231#section-7.3.2
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3

Castellani, et al. Expires January 4, 2016 [Page 21]

Internet-Draft HTTP-CoAP Mapping July 2015

 3. HTTP code 304 (Not Modified) is sent if the HTTP client performed
 a conditional HTTP request and the CoAP server responded with
 2.03 (Valid) to the corresponding CoAP validation request. Note
 that Section 4.1 of [RFC7232] puts some requirements on header
 fields that must be present in the HTTP 304 response.

 4. A 200 response to a CoAP 2.03 occurs only when the HC proxy, for
 efficiency reasons, is caching resources and translated a HTTP
 request (without conditional request) to a CoAP request that
 includes ETag validation. The proxy receiving 2.03 updates the
 freshness of its cached representation and returns the entire
 representation to the HTTP client.

 5. A HTTP 401 Unauthorized (Section 3.1 of [RFC7235]) response MUST
 include a WWW-Authenticate header. Since there is no CoAP
 equivalent of WWW-Authenticate, the HC proxy must generate this
 header itself including at least one challenge (Section 4.1 of
 [RFC7235]). If the HC proxy does not implement a proper
 authentication method that can be used to gain access to the
 target CoAP resource, it can include a 'dummy' challenge for
 example "WWW-Authenticate: None".

 6. A proxy receiving 4.02 may first retry the request with less CoAP
 Options in the hope that the CoAP server will understand the
 newly formulated request. For example, if the proxy tried using
 a Block Option [I-D.ietf-core-block] which was not recognized by
 the CoAP server it may retry without that Block Option. Note
 that HTTP 402 MUST NOT be returned because it is reserved for
 future use [RFC7231].

 7. A CoAP 4.05 (Method Not Allowed) response SHOULD normally be
 mapped to a HTTP 400 (Method Not Allowed) code, because the HTTP
 405 response would require specifying the supported methods -
 which are generally unknown. In this case the HC Proxy SHOULD
 also return a HTTP reason-phrase in the HTTP status line that
 starts with the string "405" in order to facilitate
 troubleshooting. However, if the HC proxy has more granular
 information about the supported methods for the requested
 resource (e.g. via a Resource Directory
 ([I-D.ietf-core-resource-directory])) then it MAY send back a
 HTTP 405 (Method Not Allowed) with a properly filled in "Allow"
 response-header field (Section 7.4.1 of [RFC7231]).

 8. The value of the HTTP "Retry-After" response-header field is
 taken from the value of the CoAP Max-Age Option, if present.

https://datatracker.ietf.org/doc/html/rfc7232#section-4.1
https://datatracker.ietf.org/doc/html/rfc7235#section-3.1
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231#section-7.4.1

Castellani, et al. Expires January 4, 2016 [Page 22]

Internet-Draft HTTP-CoAP Mapping July 2015

 9. This CoAP response can only happen if the proxy itself is
 configured to use a CoAP forward-proxy (Section 5.7 of [RFC7252])
 to execute some, or all, of its CoAP requests.

8. Additional Mapping Guidelines

8.1. Caching and Congestion Control

 An HC proxy SHOULD limit the number of requests to CoAP servers by
 responding, where applicable, with a cached representation of the
 resource.

 Duplicate idempotent pending requests by an HC proxy to the same CoAP
 resource SHOULD in general be avoided, by using the same response for
 multiple requesting HTTP clients without duplicating the CoAP
 request.

 If the HTTP client times out and drops the HTTP session to the HC
 proxy (closing the TCP connection) after the HTTP request was made,
 an HC proxy SHOULD wait for the associated CoAP response and cache it
 if possible. Subsequent requests to the HC proxy for the same
 resource can use the result present in cache, or, if a response has
 still to come, the HTTP requests will wait on the open CoAP request.

 According to [RFC7252], a proxy MUST limit the number of outstanding
 interactions to a given CoAP server to NSTART. To limit the amount
 of aggregate traffic to a constrained network, the HC proxy SHOULD
 also pose a limit to the number of concurrent CoAP requests pending
 on the same constrained network; further incoming requests MAY either
 be queued or dropped (returning 503 Service Unavailable). This limit
 and the proxy queueing/dropping behavior SHOULD be configurable. In
 order to effectively apply above congestion control, the HC proxy
 should be server-side placed.

 Resources experiencing a high access rate coupled with high
 volatility MAY be observed [I-D.ietf-core-observe] by the HC proxy to
 keep their cached representation fresh while minimizing the number of
 CoAP traffic in the constrained network. See Section 8.2.

8.2. Cache Refresh via Observe

 There are cases where using the CoAP observe protocol
 [I-D.ietf-core-observe] to handle proxy cache refresh is preferable
 to the validation mechanism based on ETag as defined in [RFC7252].
 Such scenarios include, but are not limited to, sleepy CoAP nodes --
 with possibly high variance in requests' distribution -- which would
 greatly benefit from a server driven cache update mechanism. Ideal
 candidates for CoAP observe are also crowded or very low throughput

https://datatracker.ietf.org/doc/html/rfc7252#section-5.7
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Castellani, et al. Expires January 4, 2016 [Page 23]

Internet-Draft HTTP-CoAP Mapping July 2015

 networks, where reduction of the total number of exchanged messages
 is an important requirement.

 This subsection aims at providing a practical evaluation method to
 decide whether refreshing a cached resource R is more efficiently
 handled via ETag validation or by establishing an observation on R.

 Let T_R be the mean time between two client requests to resource R,
 let T_C be the mean time between two representation changes of R, and
 let M_R be the mean number of CoAP messages per second exchanged to
 and from resource R. If we assume that the initial cost for
 establishing the observation is negligible, an observation on R
 reduces M_R iff T_R < 2*T_C with respect to using ETag validation,
 that is iff the mean arrival rate of requests for resource R is
 greater than half the change rate of R.

 When observing the resource R, M_R is always upper bounded by 2/T_C.

8.3. Use of CoAP Blockwise Transfer

 An HC proxy SHOULD support CoAP blockwise transfers
 [I-D.ietf-core-block] to allow transport of large CoAP payloads while
 avoiding excessive link-layer fragmentation in constrained networks,
 and to cope with small datagram buffers in CoAP end-points as
 described in [RFC7252] Section 4.6.

 An HC proxy SHOULD attempt to retry a payload-carrying CoAP PUT or
 POST request with blockwise transfer if the destination CoAP server
 responded with 4.13 (Request Entity Too Large) to the original
 request. An HC proxy SHOULD attempt to use blockwise transfer when
 sending a CoAP PUT or POST request message that is larger than
 BLOCKWISE_THRESHOLD bytes. The value of BLOCKWISE_THRESHOLD is
 implementation-specific, for example it can be:

 o calculated based on a known or typical UDP datagram buffer size
 for CoAP end-points, or

 o set to N times the known size of a link-layer frame in a
 constrained network where e.g. N=5, or

 o preset to a known IP MTU value, or

 o set to a known Path MTU value.

 The value BLOCKWISE_THRESHOLD, or the parameters from which it is
 calculated, should be configurable in a proxy implementation. The
 maximum block size the proxy will attempt to use in CoAP requests
 should also be configurable.

https://datatracker.ietf.org/doc/html/rfc7252#section-4.6

Castellani, et al. Expires January 4, 2016 [Page 24]

Internet-Draft HTTP-CoAP Mapping July 2015

 The HC proxy SHOULD detect CoAP end-points not supporting blockwise
 transfers by checking for a 4.02 (Bad Option) response returned by an
 end-point in response to a CoAP request with a Block* Option, and
 subsequent absence of the 4.02 in response to the same request
 without Block* Options. This allows the HC proxy to be more
 efficient, not attempting repeated blockwise transfers to CoAP
 servers that do not support it. However, if a request payload is too
 large to be sent as a single CoAP request and blockwise transfer
 would be unavoidable, the proxy still SHOULD attempt blockwise
 transfer on such an end-point before returning the response 413
 (Request Entity Too Large) to the HTTP client.

 For improved latency an HC proxy MAY initiate a blockwise CoAP
 request triggered by an incoming HTTP request even when the HTTP
 request message has not yet been fully received, but enough data has
 been received to send one or more data blocks to a CoAP server
 already. This is particularly useful on slow client-to-proxy
 connections.

8.4. Security Translation

 For the guidelines on security context translations for an HC proxy,
 see Section 10.2. A translation may involve e.g. applying a rule
 that any "https" request is translated to a "coaps" request, or e.g.
 applying a rule that a "https" request is translated to an unsecured
 "coap" request.

8.5. CoAP Multicast

 An HC proxy MAY support CoAP multicast. If it does, the HC proxy
 sends out a multicast CoAP request if the Target CoAP URI's authority
 is a multicast IP literal or resolves to a multicast IP address;
 assuming the proper security measures are in place to mitigate
 security risks of CoAP multicast (Section 10). If the security
 policies do not allow the specific CoAP multicast request to be made,
 the HC proxy SHOULD respond 403 (Forbidden).

 If an HC proxy does not support CoAP multicast, it SHOULD respond 403
 (Forbidden) to any valid HTTP request that maps to a CoAP multicast
 request.

 Details related to supporting CoAP multicast are currently out of
 scope of this document since in a reverse proxy scenario a HTTP
 client typically expects to receive a single response, not multiple.
 However, an HC proxy that implements CoAP multicast MAY include
 application-specific functions to aggregate multiple CoAP responses
 into a single HTTP response. We suggest using the "application/http"
 internet media type (Section 8.3.2 of [RFC7230]) to enclose a set of

https://datatracker.ietf.org/doc/html/rfc7230#section-8.3.2

Castellani, et al. Expires January 4, 2016 [Page 25]

Internet-Draft HTTP-CoAP Mapping July 2015

 one or more HTTP response messages, each representing the mapping of
 one CoAP response.

8.6. Timeouts

 When facing long delays of a CoAP server in responding, the HTTP
 client or any other proxy in between MAY timeout. Further discussion
 of timeouts in HTTP is available in Section 6.2.4 of [RFC7230].

 An HC proxy MUST define an internal timeout for each pending CoAP
 request, because the CoAP server may silently die before completing
 the request. Assuming the Proxy may use confirmable CoAP requests,
 such timeout value T SHOULD be at least

 T = MAX_RTT + MAX_SERVER_RESPONSE_DELAY

 where MAX_RTT is defined in [RFC7252] and MAX_SERVER_RESPONSE_DELAY
 is defined in [RFC7390]. An exception to this rule occurs when the
 HC proxy is configured with a HTTP response timeout value that is
 lower than above value T; then the lower value should be also used as
 the CoAP request timeout.

8.7. Miscellaneous

 In certain use cases, constrained CoAP nodes do not make use of the
 DNS protocol. However even when the DNS protocol is not used in a
 constrained network, defining valid FQDN (i.e., DNS entries) for
 constrained CoAP servers, where possible, may help HTTP clients to
 access the resources offered by these servers via an HC proxy.

 HTTP connection pipelining (section 6.3.2 of [RFC7230]) may be
 supported by an HC proxy. This is transparent to the CoAP servers:
 the HC proxy will serve the pipelined requests by issuing different
 CoAP requests. The HC proxy in this case needs to respect the NSTART
 limit of Section 4.7 of [RFC7252].

9. IANA Considerations

9.1. New 'core.hc' Resource Type

 This document registers a new Resource Type (rt=) Link Target
 Attribute, 'core.hc', in the "Resource Type (rt=) Link Target
 Attribute Values" subregistry under the "Constrained RESTful
 Environments (CoRE) Parameters" registry.

 Attribute Value: core.hc

 Description: HTTP to CoAP mapping base resource.

https://datatracker.ietf.org/doc/html/rfc7230#section-6.2.4
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7390
https://datatracker.ietf.org/doc/html/rfc7230#section-6.3.2
https://datatracker.ietf.org/doc/html/rfc7252#section-4.7

Castellani, et al. Expires January 4, 2016 [Page 26]

Internet-Draft HTTP-CoAP Mapping July 2015

 Reference: See Section 5.4.

9.2. New 'coap-payload' Internet Media Type

 This document defines the "application/coap-payload" media type with
 a single parameter "cf". This media type represents any payload that
 a CoAP message can carry, having a content format that can be
 identified by a CoAP Content-Format parameter (an integer in range
 0-65535). The parameter "f" is the integer defining the CoAP content
 format.

 Type name: application

 Subtype name: coap-payload

 Required parameters:

 cf - CoAP Content-Format integer in range 0-65535 denoting the
 content format of the CoAP payload carried.

 Optional parameters: None

 Encoding considerations:

 The specific CoAP content format encoding considerations for the
 selected Content-Format (cf parameter) apply.

 Security considerations:

 The specific CoAP content format security considerations for the
 selected Content-Format (cf parameter) apply.

 Interoperability considerations:

 Published specification: (this I-D - TBD)

 Applications that use this media type:

 HTTP-to-CoAP Proxies.

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

Castellani, et al. Expires January 4, 2016 [Page 27]

Internet-Draft HTTP-CoAP Mapping July 2015

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information:

 Esko Dijk ("esko@ieee.org")

 Intended usage: COMMON

 Restrictions on usage:

 An application (or user) can only use this media type if it has to
 represent a CoAP payload of which the specified CoAP Content-Format
 is an unrecognized number; such that a proper translation directly to
 the equivalent HTTP media type is not possible.

 Author: CoRE WG

 Change controller: IETF

 Provisional registration? (standards tree only): N/A

10. Security Considerations

 The security concerns raised in Section 9.2 of [RFC7230] also apply
 to the HC proxy scenario. In fact, the HC proxy is a trusted (not
 rarely a transparently trusted) component in the network path.

 The trustworthiness assumption on the HC proxy cannot be dropped,
 because the protocol translation function is the core duty of the HC
 proxy: it is a necessarily trusted, impossible to bypass, component
 in the communication path.

 A reverse proxy deployed at the boundary of a constrained network is
 an easy single point of failure for reducing availability. As such,
 special care should be taken in designing, developing and operating
 it, keeping in mind that, in most cases, it has fewer limitations
 than the constrained devices it is serving.

 The following sub paragraphs categorize and discuss a set of specific
 security issues related to the translation, caching and forwarding
 functionality exposed by an HC proxy.

Castellani, et al. Expires January 4, 2016 [Page 28]

https://datatracker.ietf.org/doc/html/rfc7230#section-9.2

Internet-Draft HTTP-CoAP Mapping July 2015

10.1. Traffic Overflow

 Due to the typically constrained nature of CoAP nodes, particular
 attention SHOULD be given to the implementation of traffic reduction
 mechanisms (see Section 8.1), because inefficient proxy
 implementations can be targeted by unconstrained Internet attackers.
 Bandwidth or complexity involved in such attacks is very low.

 An amplification attack to the constrained network may be triggered
 by a multicast request generated by a single HTTP request which is
 mapped to a CoAP multicast resource, as considered in Section 11.3 of
 [RFC7252].

 The risk likelihood of this amplification technique is higher than an
 amplification attack carried out by a malicious constrained device
 (e.g. ICMPv6 flooding, like Packet Too Big, or Parameter Problem on
 a multicast destination [RFC4732]), since it does not require direct
 access to the constrained network.

 The feasibility of this attack, disruptive in terms of CoAP server
 availability, can be limited by access controlling the exposed HTTP
 multicast resources, so that only known/authorized users access such
 URIs.

10.2. Handling Secured Exchanges

 An HTTP request can be sent to the HC proxy over a secured
 connection. However, there may not always exist a secure connection
 mapping to CoAP. For example, a secure distribution method for
 multicast traffic is complex and MAY not be implemented (see
 [RFC7390]).

 An HC proxy SHOULD implement explicit rules for security context
 translations. A translation may involve e.g. applying a rule that
 any "https" unicast request is translated to a "coaps" request, or
 e.g. applying a rule that a "https" request is translated to an
 unsecured "coap" request. Another rule could specify the security
 policy and parameters used for DTLS connections. Such rules will
 largely depend on the application and network context in which a
 proxy operates. These rules SHOULD be configurable in an HC proxy.

 If a policy for access to 'coaps' URIs is configurable in an HC
 proxy, it is RECOMMENDED that the policy is by default configured to
 disallow access to any 'coaps' URI by a HTTP client using an
 unsecured (non-TLS) connection. Naturally, a user MAY reconfigure
 the policy to allow such access in specific cases.

https://datatracker.ietf.org/doc/html/rfc7252#section-11.3
https://datatracker.ietf.org/doc/html/rfc7252#section-11.3
https://datatracker.ietf.org/doc/html/rfc4732
https://datatracker.ietf.org/doc/html/rfc7390

Castellani, et al. Expires January 4, 2016 [Page 29]

Internet-Draft HTTP-CoAP Mapping July 2015

 By default, an HC proxy SHOULD reject any secured client request if
 there is no configured security policy mapping. This recommendation
 MAY be relaxed in case the destination network is believed to be
 secured by other, complementary, means. E.g.: assumed that CoAP
 nodes are isolated behind a firewall (e.g. as in the SS HC proxy
 deployment shown in Figure 1), the HC proxy may be configured to
 translate the incoming HTTPS request using plain CoAP (NoSec mode).

 The HTTP-CoAP URI mapping (defined in Section 5) MUST NOT map to HTTP
 a CoAP resource intended to be only accessed securely.

 A secured connection that is terminated at the HC proxy, i.e., the
 proxy decrypts secured data locally, raises an ambiguity about the
 cacheability of the requested resource. The HC proxy SHOULD NOT
 cache any secured content to avoid any leak of secured information.
 However, in some specific scenario, a security/efficiency trade-off
 could motivate caching secured information; in that case the caching
 behavior MAY be tuned to some extent on a per-resource basis.

10.3. Proxy and CoAP Server Resource Exhaustion

 If the HC proxy implements the low-latency optimization of
Section 8.3 intended for slow client-to-proxy connections, the Proxy

 may become vulnerable to a resource exhaustion attack. In this case
 an attacking client could initiate multiple requests using a
 relatively large message body which is (after an initial fast
 transfer) transferred very slowly to the Proxy. This would trigger
 the HC proxy to create state for a blockwise CoAP request per HTTP
 request, waiting for the arrival of more data over the HTTP/TCP
 connection. Such attacks can be mitigated in the usual ways for HTTP
 servers using for example a connection time limit along with a limit
 on the number of open TCP connections per IP address.

10.4. URI Mapping

 The following risks related to the URI mapping described in Section 5
 and its use by HC proxies have been identified:

 DoS attack on the constrained/CoAP network.
 To mitigate, by default deny any Target CoAP URI whose authority
 is (or maps to) a multicast address. Then explicitly white-list
 multicast resources/authorities that are allowed to be de-
 referenced. See also Section 8.5.

 Leaking information on the constrained/CoAP network resources and
 topology.
 To mitigate, by default deny any Target CoAP URI (especially
 /.well-known/core is a resource to be protected), and then

Castellani, et al. Expires January 4, 2016 [Page 30]

Internet-Draft HTTP-CoAP Mapping July 2015

 explicit white-list resources that are allowed to be seen from
 outside.

 Reduced privacy due to the mechanics of the URI mapping.
 The internal CoAP Target resource is totally transparent from
 outside. An HC proxy can mitigate by implementing a HTTPS-only
 interface, making the Target CoAP URI totally opaque to a passive
 attacker.

11. Acknowledgements

 An initial version of Table 2 in Section 7 has been provided in
 revision -05 of the CoRE CoAP I-D. Special thanks to Peter van der
 Stok for countless comments and discussions on this document, that
 contributed to its current structure and text.

 Thanks to Carsten Bormann, Zach Shelby, Michele Rossi, Nicola Bui,
 Michele Zorzi, Klaus Hartke, Cullen Jennings, Kepeng Li, Brian Frank,
 Peter Saint-Andre, Kerry Lynn, Linyi Tian, Dorothy Gellert, Francesco
 Corazza for helpful comments and discussions that have shaped the
 document.

 The research leading to these results has received funding from the
 European Community's Seventh Framework Programme [FP7/2007-2013]
 under grant agreement n.251557.

12. References

12.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",

draft-ietf-core-block-17 (work in progress), March 2015.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-

core-observe-16 (work in progress), December 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-17
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-16
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-16
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5234

Castellani, et al. Expires January 4, 2016 [Page 31]

Internet-Draft HTTP-CoAP Mapping July 2015

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7232] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests", RFC 7232, June 2014.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

12.2. Informative References

 [I-D.bormann-core-links-json]
 Bormann, C., "Representing CoRE Link Collections in JSON",

draft-bormann-core-links-json-02 (work in progress),
 February 2013.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-03
 (work in progress), June 2015.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040, January 2001.

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-bormann-core-links-json-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-03
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3040
https://datatracker.ietf.org/doc/html/rfc4732
https://datatracker.ietf.org/doc/html/rfc7049

Castellani, et al. Expires January 4, 2016 [Page 32]

Internet-Draft HTTP-CoAP Mapping July 2015

 [RFC7390] Rahman, A. and E. Dijk, "Group Communication for the
 Constrained Application Protocol (CoAP)", RFC 7390,
 October 2014.

Appendix A. Change Log

 [Note to RFC Editor: Please remove this section before publication.]

 Changes from ietf-06 to ietf-07:

 o Addressed Ticket #384 - Section 5.4.1 describes briefly
 (informative) how to discover CoAP resources from an HTTP client.

 o Addressed Ticket #378 - For HTTP media type to CoAP content format
 mapping and vice versa: a new draft (TBD) may be proposed in CoRE
 which describes an approach for automatic updating of the media
 type mapping. This was noted in Section 6.1 but is otherwise
 outside the scope of this draft.

 o Addressed Ticket #377 - Added IANA section that defines a new HTTP
 media type "application/coap-payload" and created new Section 6.2
 on how to use it.

 o Addressed Ticket #376 - Updated Table 2 (and corresponding note 7)
 to indicate that a CoAP 4.05 (Method Not Allowed) Response Code
 should be mapped to a HTTP 400 (Bad Request).

 o Added note to comply to ABNF when translating CoAP diagnostic
 payload to reason-phrase in Section 6.5.3.

 Changes from ietf-05 to ietf-06:

 o Fully restructured the draft, bringing introductory text more to
 the front and allocating main sections to each of the key topics;
 addressing Ticket #379;

 o Addressed Ticket #382, fix of enhanced form URI template
 definition of q in Section 5.3.2;

 o Addressed Ticket #381, found a mapping 4.01 to 401 Unauthorized in
Section 7;

 o Addressed Ticket #380 (Add IANA registration for "core.hc"
 Resource Type) in Section 9;

 o Addressed Ticket #376 (CoAP 4.05 response can't be translated to
 HTTP 405 by HC proxy) in Section 7 by use of empty 'Allow' header;

https://datatracker.ietf.org/doc/html/rfc7390

Castellani, et al. Expires January 4, 2016 [Page 33]

Internet-Draft HTTP-CoAP Mapping July 2015

 o Removed details on the pros and cons of HC proxy placement
 options;

 o Addressed review comments of Carsten Bormann;

 o Clarified failure in mapping of HTTP Accept headers (Section 6.3);

 o Clarified detection of CoAP servers not supporting blockwise
 (Section 8.3);

 o Changed CoAP request timeout min value to MAX_RTT +
 MAX_SERVER_RESPONSE_DELAY (Section 8.6);

 o Added security section item (Section 10.3) related to use of CoAP
 blockwise transfers;

 o Many editorial improvements.

 Changes from ietf-04 to ietf-05:

 o Addressed Ticket #366 (Mapping of CoRE Link Format payloads to be
 valid in HTTP Domain?) in Section 6.3.3.2 (Content Transcoding -
 CORE Link Format);

 o Addressed Ticket #375 (Add requirement on mapping of CoAP
 diagnostic payload) in Section 6.3.3.3 (Content Transcoding -
 Diagnostic Messages);

 o Addressed comment from Yusuke (http://www.ietf.org/mail-
archive/web/core/current/msg05491.html) in Section 6.3.3.1

 (Content Transcoding - General);

 o Various editorial improvements.

 Changes from ietf-03 to ietf-04:

 o Expanded use case descriptions in Section 4;

 o Fixed/enhanced discovery examples in Section 5.4.1;

 o Addressed Ticket #365 (Add text on media type conversion by HTTP-
 CoAP proxy) in new Section 6.3.1 (Generalized media type mapping)
 and new Section 6.3.2 (Content translation);

 o Updated HTTPBis WG draft references to recently published RFC
 numbers.

 o Various editorial improvements.

Castellani, et al. Expires January 4, 2016 [Page 34]

http://www.ietf.org/mail-archive/web/core/current/msg05491.html
http://www.ietf.org/mail-archive/web/core/current/msg05491.html

Internet-Draft HTTP-CoAP Mapping July 2015

 Changes from ietf-02 to ietf-03:

 o Closed Ticket #351 "Add security implications of proposed default
 HTTP-CoAP URI mapping";

 o Closed Ticket #363 "Remove CoAP scheme in default HTTP-CoAP URI
 mapping";

 o Closed Ticket #364 "Add discovery of HTTP-CoAP mapping
 resource(s)".

 Changes from ietf-01 to ietf-02:

 o Selection of single default URI mapping proposal as proposed to WG
 mailing list 2013-10-09.

 Changes from ietf-00 to ietf-01:

 o Added URI mapping proposals to Section 4 as per the Email
 proposals to WG mailing list from Esko.

Authors' Addresses

 Angelo P. Castellani
 University of Padova
 Via Gradenigo 6/B
 Padova 35131
 Italy

 Email: angelo@castellani.net

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

Castellani, et al. Expires January 4, 2016 [Page 35]

Internet-Draft HTTP-CoAP Mapping July 2015

 Akbar Rahman
 InterDigital Communications, LLC
 1000 Sherbrooke Street West
 Montreal H3A 3G4
 Canada

 Phone: +1 514 585 0761
 Email: Akbar.Rahman@InterDigital.com

 Thomas Fossati
 Alcatel-Lucent
 3 Ely Road
 Milton, Cambridge CB24 6DD
 UK

 Email: thomas.fossati@alcatel-lucent.com

 Esko Dijk
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Email: esko.dijk@philips.com

Castellani, et al. Expires January 4, 2016 [Page 36]

