
 TOC SIPPING V. Gurbani

Internet-Draft
Bell Laboratories,
Alcatel-Lucent

Intended status:
Informational

E. Burger

Expires: September 10,
2009

This Space for Sale

T. Anjali

Illinois Institute of
Technology

H. Abdelnur

O. Festor

INRIA

March 09, 2009

The Common Log File (CLF) format for the Session Initiation Protocol
(SIP)
DOCNAME

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at http://
www.ietf.org/shadow.html.
This Internet-Draft will expire on September 10, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document
authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions
Relating to IETF Documents in effect on the date of publication of this
document (http://trustee.ietf.org/license-info). Please review these
documents carefully, as they describe your rights and restrictions with
respect to this document.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.ietf.org/shadow.html

 TOC

Abstract

Well-known web servers such as Apache and web proxies like Squid support
event logging using a common log format. The logs produced using these
de-facto standard formats are invaluable to system administrators for
trouble-shooting a server and tool writers to craft tools that mine the
log files and produce reports and trends. Furthermore, these log files
can also be used to train anomaly detection systems and feed events into
a security event management system. The Session Initiation Protocol does
not have a common log format, and as a result, each server supports a
distinct log format that makes it unnecessarily complex to produce tools
to do trend analysis and security detection. We propose a common log
file format for SIP servers that can be used uniformly for proxies,
registrars, redirect servers as well as back-to-back user agents.

Table of Contents

1. Introduction
2. Terminology
3. Relationship between SIP CLF and Call Detail Record
4. CLF Format

4.1. ABNF
4.2. Data Elements
4.3. Request CLF
4.4. Response CLF

5. A CLF for SIP Servers
6. Proxy Servers and B2BUA Correlation Directives
7. Security Considerations
8. IANA Considerations
9. Acknowledgments
10. References

10.1. Normative References
10.2. Informative References

§ Authors' Addresses

1. Introduction

Well-known web servers such as Apache and Squid support event logging
using a Common Log Format (CLF), the common structure for logging
requests and responses serviced by the web server. It can be argued that
a good part of the success of Apache has been its CLF because it allowed
third parties to produce tools that analyzed the data and generated
traffic reports and trends. The Apache CLF has been so successful that
not only did it become the de-facto standard in producing logging data
for web servers, but also many commercial web servers can be configured
to produce logs in this format.

The Session Initiation Protocol (Rosenberg, J., Schulzrinne, H.,
Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and
E. Schooler, “SIP: Session Initiation Protocol,” June 2002.) [1](SIP) is
an Internet multimedia session signaling protocol that is increasingly
used for other services besides session establishment. SIP does not have
a CLF today.
As SIP becomes pervasive in multiple business domains and ubiquitous in
academic and research environments, it is beneficial to establish a CLF
for the following reasons:

Allows for a common reference for interpreting the state of SIP
transactions in SIP servers across multiple vendor implementations
and open-source alternatives.

Allows for the training of anomaly detection systems that once
trained can monitor the CLF file to trigger an alarm on the
subsequent deviations from accepted patterns in the data set.
Currently, anomaly detection systems monitor the network and parse
raw packets that comprise a SIP message -- a process that is
unsuitable for anomaly detection systems [3] (Rieck, K., Wahl, S.,
Laskov, P., Domschitz, P., and K-R. Muller, “A Self-learning
System for Detection of Anomalous SIP Messages,” 2008.). With all
the necessary event data at their disposal, network operations
managers and information technology operation managers are in a
much better position to correlate, aggregate, and prioritize log
data to maintain situational awareness.

Allows independent tool providers to craft tools and applications
that interpret the CLF data to produce insightful trend analysis
and detailed traffic reports.

Allows for automatic testing of SIP equipment and establishing a
concise and standardized diagnostic trail of a SIP session.

Establishing a CLF for SIP is a challenging task. The behavior of a SIP
entity is more complex when compared to the equivalent HTTP entity.
Base protocol services such as parallel or serial forking elicit
multiple final responses. Ensuing delays between sending a request and
receiving a final response all add complexity when considering what
fields should comprise a CLF and in what manner. Furthermore, unlike
HTTP, SIP groups multiple discrete transactions into a dialog, and these
transactions may arrive at a varying inter-arrival rate at a proxy. For
example, the BYE transaction usually arrives much after the
corresponding INVITE transaction was received, serviced and expunged
from the transaction list. Nonetheless, it is advantageous to relate
these transactions such that automata or a human monitoring the log file
can construct a set consisting of related transactions.
ACK requests in SIP need careful consideration as well. In SIP, an ACK
is a special method that is associated with an INVITE only. It does not
require a response, and furthermore, if it is acknowledging a non-2xx
response, then the ACK is considered part of the original INVITE
transaction. If it is acknowledging a 2xx-class response, then the ACK

*

*

*

*

 TOC

 TOC

is a separate transaction consisting of a request only (i.e., there is
not a response for an ACK request.) CANCEL is another method that is
tied to an INVITE transaction, but unlike ACK, the CANCEL request
elicits a final response.
While most requests elicit a response immediately, the INVITE request in
SIP can wait at a proxy as it forks branches downstream or at a user
agent server while it alerts the user. RFC 3261 (Rosenberg, J.,
Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and E. Schooler, “SIP: Session Initiation Protocol,”
June 2002.) [1] instructs the server transaction to send a 1xx-class
provisional response if a final response is delayed for more than 200
ms. A SIP SLF log file needs to include such provisional responses
because they help train automata associated with anomaly detection
systems and provide some positive feedback for a human observer
monitoring the log file.
Finally, beyond supporting native SIP actors such as proxies,
registrars, redirect servers, and user agent servers (UAS), it is
beneficial to derive a CLF format that supports back-to-back user agent
(B2BUA) behavior, which may vary considerably depending on the specific
nature of the B2BUA.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,” March 1997.)
[2].
RFC 3261 (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, “SIP: Session
Initiation Protocol,” June 2002.) [1] defines additional terms used in
this document that are specific to the SIP domain such as "proxy";
"registrar"; "redirect server"; "user agent server" or "UAS"; "user
agent client" or "UAC"; "back-to-back user agent" or "B2BUA"; "dialog";
"transaction"; "server transaction".
This document uses the term "SIP Server" that is defined to include the
following SIP entities: user agent server, registrar, redirect server, a
SIP proxy in the role of user agent server, and a B2BUA in the role of a
user agent server.

3. Relationship between SIP CLF and Call Detail Record

With the success of SIP in traditional telephony domains, it is tempting
to think of the SIP CLF as a replacement for call logs and Call Detail
Records (CDRs). However, this is expressly not our intent. The charging
system of a telephone exchange produces a CDR. Insofar as a SIP entity

 TOC

remotehost:

rfc931:

authuser:

[date]:

request:

status:

bytes:

is acting as a telephone exchange, it can continue producing CDR
irrespective of whether it also produces a SIP CLF.
A SIP CLF is a standardized text file format used by SIP Servers,
proxies, and B2BUAs. A SIP CLF is simply an easily digestible log of
past and current transactions. It contains enough information to allow
humans and automata to derive relationships between discrete
transactions handled at a SIP entity. It is amenable to quick parsing
(i.e., well-delimited fields) and it is platform and operating system
neutral.

4. CLF Format

The inspiration for the SIP CLF format is the Apache CLF. The structure
of the Apache CLF, including the format string that appears in the
Apache configuration file, is as follows.

 %h %l %u %t \"%r\" %s %b
 remotehost rfc931 authuser [date] request status bytes

Remote hostname (or IP number if DNS hostname is not
available, or if DNSLookup is Off.

The remote logname of the user.

The username by which the user has authenticated himself.

Date and time of the request.

The request line exactly as it came from the client.

The HTTP status code returned to the client.

The content-length of the document transferred.

Section 5 (A CLF for SIP Servers) outlines the SIP CLF. Section 6 (Proxy
Servers and B2BUA Correlation Directives) contains additional logging
data elements that correlate forked transactions in proxies or similar
transactions at a B2BUA that require correlation.
While based on the Apache CLF, the SIP CLF does not use the RFC 931 (St.
Johns, M., “Authentication server,” January 1985.) [4] identification
service. RFC 931 and its successor, RFC 1413 (St. Johns, M.,
“Identification Protocol,” February 1993.) [5], provide the identity of
a user associated with a particular TCP connection. Such a service does
not work for SIP because SIP runs over multiple transports. More
importantly, in today's networks, firewalls often block access to port
113 (decimal), the port associated with the identification service,
rendering it completely useless.

 TOC

 TOC

date (%d):

remotehost (%h):

authuser (%u):

method (%m):

request-uri (%r):

While this document defines the log string in terms of parameter strings
(the "%" tokens), this is done in order to facilitate the subsequent
discussion only. More specifically, these format strings allow us to
describe the format of the SIP CLF file, they must not be used as log
configuration strings for individual SIP servers. The definitions in
this document for a log file line are the only definition for SIP CLF
records.

4.1. ABNF

NB: The ABNF below is not formal, nor is it completely closed-
end. At this point, we would like to write the data elements down
and produce the formal BNF corresponding to them in the next
revision.

 sip-clf = request-clf / response-clf
 request-clf = %d %h %u %m %r %f %t %i "%c" %x %y [delim extension]
 response-clf = %d %x %y %s %m %t "%c" [delim extension]
 delim = "--"
 extension = to be defined (other headers) / message-body

 Notes:
 message-body is defined in RFC3261.
 %m in response-clf was added in individual submission -01
 because we need it to differentiate the response of a CANCEL
 from that of an INVITE. Both CANCELs and INVITEs will have
 the same %x value.

4.2. Data Elements

Date and time of the request as the number of seconds
since the Unix epoch. [Note 1]

The DNS name or IP address of the upstream client.

The user name by which the user has been
authenticated. If the user name is unknown or when a request is
challenged, the value in this field MUST be "-" [Note 2].

The name of the SIP method. MUST appear in upper-case
in the log file.

The Request-URI, including any URI parameters.

from (%f):

to (%t):

callid (%i):

status (%s):

contactlist (%c):

server transaction association code(%x):

client transaction association code (%y):

[Note 1]

[Note 2]

[Note 3]

[Note 4]

The From URI, including the tag. Whilst one may question
the value of the From URI in light of RFC 4474 (Peterson, J. and
C. Jennings, “Enhancements for Authenticated Identity Management
in the Session Initiation Protocol (SIP),” August 2006.) [6], the
From URI, nonetheless, imparts some information. For one, the
From tag is important and, in the case of a REGISTER request, the
From URI can provide information on whether this was a third-
party registration or a first-party one [Note 3].

The To URI, including the tag.

The Call-ID value.

The SIP response status code returned upstream.

Contact URIs in the response, if any. If there
are no Contact URIs, the SIP Server MUST log a "-" for the
contactlist. If there are multiple URIs, the SIP Server MUST
delimit the list of URIs by a commas (,) [Note 4].

The transaction identifier
associated with the server transaction. Implementations MAY reuse
the server transaction identifier (the topmost branch-id of the
incoming request, with or without the magic cookie), or they MAY
generate a unique identification string for a server transaction
(this identifier needs to be locally unique to the server only.)
This identifier is used to correlate ACKs and CANCELs to an
INVITE transaction; it is also used to aid in forking as will be
explained in Section 6 (Proxy Servers and B2BUA Correlation
Directives).

This field is used to
associate client transactions with a server transaction for
forking proxies or B2BUAs. It is explained further in Section 6
(Proxy Servers and B2BUA Correlation Directives).

Do we need sub-second resolution? A simple solution is to
go date.mmm, where mmm is the time in milliseconds. Thoughts?

The realm is not specified here. HTTP CLF does not specify
it either, but that does not mean that we cannot do better.
Should we? Thoughts...

Go with addr-spec in ABNF here and handle the tag, which
is actually a header parameter and not a URI parameter.

Dale pointed out that quotes to delimit Contact may not be
adequate because name-addr can contain a quote. Coming up with
delimiters for Contact is as yet an open issue.

 TOC

 TOC

 TOC

If a field is not applicable to the event, or if the SIP Server does not
know the value of the field, the SIP Server MUST use the field value
"-", without the quotes. If the field value in a current event is
identical to a field value from a prior event with the same server
transaction identifier, the SIP Server MAY use a "+", without the
quotes, as the field value to indicate such repetition. The SIP Server
MUST NOT use a "+" for the date or server transaction fields.

4.3. Request CLF

SIP Servers generating a SIP CLF log for a SIP request MUST follow the
format string in the following figure. A SIP CLF log entry for a SIP
request MUST have these 11 fields in the order listed below. A SIP
Server MAY add additional fields after these 12 fields.

 %d %h %u %m %r %f %t %i "%c" %x %y

4.4. Response CLF

SIP Servers generating a SIP CLF log for a response event MUST follow
the format string in the following figure. A SIP CLF log entry for a
response event MUST have these five fields in the order listed below.
The server transaction (%x) field MUST be present. This allows the
automata or observer monitoring the log file to correlate late responses
with pending transactions. This construct is also used in Section 6
(Proxy Servers and B2BUA Correlation Directives) to associate responses
arriving on client transactions and responses being sent on a server
transaction in case of a forking proxy or a B2BUA.

 %d %x %y %s %m %t "%c"

The To header (%t) is part of the response CLF because it contains the
tag associated with the recipient of the request; this tag, in turn, is
used to identify a dialog.

TODO: Should we just put the To-tag here instead of the whole URI?

5. A CLF for SIP Servers

A SIP CLF record MUST occupy one physical line in the log file. A line
is a string of octets terminated by a CRLF.

A SIP CLF record MUST conform to the patterns described in Section 4.3
(Request CLF) and Section 4.4 (Response CLF). A SIP CLF record may have
other fields appended to the patterns described here.
A SIP CLF record for SIP Servers MUST contain exactly one request CLF
line (Section 4.3 (Request CLF)) and one or more corresponding response
lines (Section 4.4 (Response CLF)). A SIP CLF record for the ACK request
MUST NOT contain any corresponding response lines (Section 4.4 (Response
CLF)).
Illustrative examples of the SIP CLF follow. These examples use the
<allOneLine> tag defined in RFC 4475 (Sparks, R., Hawrylyshen, A.,
Johnston, A., Rosenberg, J., and H. Schulzrinne, “Session Initiation
Protocol (SIP) Torture Test Messages,” May 2006.) [7] to logically
denote a single line.
In the following example, Alice is registering herself with her domain's
registrar and is challenged for HTTP Digest:

 <allOneLine>
 1230756550 192.168.1.2 - REGISTER sip:example.com
 sip:alice@example.com;tag=iu8u76 sip:alice@example.com
 8719u@example.com - hgt678h -
 </allOneLine>

 1230756550 hgt678h - 401 REGISTER sip:alice@example.com;tag=8hy -

In this example, Alice has successfully authenticated herself with her
registrar. The information logged contains her authorized identity as
well as the list of Contact URIs that were registered. Note that the
last two fields are not populated because there is no need to maintain
further state about this REGISTER transaction:

 <allOneLine>
 1230756560 192.168.1.2 alice REGISTER sip:example.com
 sip:alice@example.com;tag=iu8u76 sip:alice@example.com;tag=yh78
 8719u@example.com
 "<sip:alice@lab.example.com>;q=0.7;expires=7200,
 <sip:alice@home.example.net>;q=0.5;expires=3600"
 hgt679h -
 </allOneLine>

 <allOneLine>
 1230756550 hgt679h - 200 REGISTER +
 "<sip:alice@lab.example.com>;q=0.7;expires=7200,
 <sip:alice@home.example.net>;q=0.5;expires=3600"
 </allOneLine>

The next example shows a log file entry from Alice's UAS when it
received a MESSAGE request from Bob and responded to it using a 2xx-
class response:

 <allOneLine>
 1230756560 192.168.1.10 - MESSAGE sip:alice@example.com
 sip:alice@example.com;tag=jki7 sip:bob@example.net
 7y16@example.net - 76gr56 -
 </allOneLine>

 1230756560 76gr56 - 200 MESSAGE sip:bob@example.net;tag=8uy -

This example shows a log file entry from Bob's UAS that responded to a
3xx-class response to Alice's session invitation request. Of interest
here is the third line that contains an ACK request received by Bob's
UAS for the INVITE transaction. See that the %x field of both the log
entries match, thereby confirming correlation. Since this is an ACK
request corresponding to an existing INVITE transaction, critical
information like To, From, Call-ID, etc. remain the same. Thus to save
I/O and log file space, the implementation chose to abbreviate the
repeated fields with the "+" entries.

 <allOneLine>
 1230756560 192.168.1.10 - INVITE sip:bob@example.net
 sip:alice@example.com;tag=iu8u76 sip:bob@example.net
 i98ju@example.com - y6y78u -
 </allOneLine>

 <allOneLine>
 1230756560 y6y78u - 302 INVITE sip:bob@example.net;tag=yh78
 "<sip:bob@home.example.net>"
 </allOneLine>

 1230756560 192.168.1.10 - ACK + + + + + y6y78u -

The next few examples demonstrate the more complex scenarios
corresponding to handling CANCELs and sending delayed responses
upstream.
In this example, Bob contacts Alice; Alice's UAS has sent a 180 upstream
but has not generated a final response yet. Before Alice has a chance to
pick up the phone, Bob hangs up causing a CANCEL to arrive at Alice's
UAS. Alice's UAS processes the CANCEL, sending a 200 OK (CANCEL),
followed by sending a 487 (INVITE) and receiving an ACK:

 TOC

 <allOneLine>
 1230756560 192.168.1.10 - INVITE sip:bob@example.net
 sip:alice@example.com;tag=iu8u76 sip:bob@example.net
 i98ju@example.com "<sip:bob@home.example.net>" y6y78u -
 </allOneLine>

 1230756560 y6y78u - 100 INVITE sip:bob@example.net;tag=yh78 -
 1230756560 y6y78u - 180 INVITE + -
 1230756561 192.168.1.10 - CANCEL + + + + - y6y78u -
 1230756560 y6y78u - 200 CANCEL + -
 1230756561 y6y78u - 487 INVITE sip:bob@example.net;tag=yh78 -
 1230756561 192.168.1.10 - ACK + + + + + y6y78u -

The following example demonstrates a session being queued and finally
answered by the UAS:

 <allOneLine>
 1230756560 192.168.1.10 - INVITE sip:agent@acd.example.net
 sip:alice@example.com;tag=iu8u76 sip:agent@acd.example.net
 i98ju@example.com - z9hG4bk7yt6 -
 </allOneLine>
 <allOneLine>
 1230756560 z9hG4bk7yt6 - 100 INVITE
 sip:agent@acd.example.net;tag=oi8 -
 </allOneLine>
 1230756560 z9hG4bk7yt6 - 180 INVITE + -
 1230756561 z9hG4bk7yt6 - 182 INVITE + -
 1230756564 z9hG4bk7yt6 - 182 INVITE + -
 1230756565 z9hG4bk7yt6 - 183 INVITE + -
 1230756566 z9hG4bk7yt6 - 200 INVITE + -
 1230756566 192.168.1.10 - ACK + + + + - z9hG4bk7yt6 -

Note that the CLF format is designed such that using the server
transaction in a regular expression search will yield a filtered result
containing all pertinent entries to that server transaction. This allows
the human observer to sift through the file ex post facto to recreate
the transaction state or to train anomaly detection automata with a
pertinent data set.

6. Proxy Servers and B2BUA Correlation Directives

SIP Proxies may fork, creating several client transactions that
correlate to a single server transaction. Responses arriving on these
client transactions, or new requests (CANCEL, ACK) sent on the client
transaction need log file entries that correlate with a server
transaction. Similarly, a B2BUA may create one or more client
transactions in response to an incoming request. These transactions will
require correlation as well.

We present the correlation directives below. They are best expressed
through an example call flow described next.
Let us assume that Bob is running a call-stateful proxy. Alice decides
to establish a session with Bob through his proxy. Bob's proxy does a
location lookup and decides to fork the request downstream to two
destinations. Of these two destinations, one generates a 500-class
response while the other generates a 200-class response. Bob's proxy
sends an ACK on the branch corresponding to the 500-class response and
sends the 200-class one upstream. Since it is call stateful, it will
receive an ACK and proxy it downstream.
First, Bob's proxy receives a request from Alice. Bob's proxy creates a
server transaction in the log file and sends a 100 upstream:

 <allOneLine>
 1230756560 192.168.1.10 - INVITE sip:bob@example.net
 sip:alice@example.com;tag=hy7 sip:bob@example.net
 7yhgt1@example.com - uyt67h FORK/-
 </allOneLine>

 1230756560 uyt67h - 100 INVITE + -

Note the last column in the request CLF line: "FORK/-". This entry is
the client transaction association code (%y) that the SIP CLF uses to
track client transactions. The format of this field is "directive/
client-transaction-id". Directive is either "FORK" or "CLIENT". The
server transaction of a proxy or a B2BUA uses "FORK". The client
transaction uses "CLIENT". When a server transaction forks, and in this
document we consider it forking even if the proxy forwards the request
to a single downstream destination, the value of %y MUST be "FORK/-".
The client-transaction-id portion of the %y field is an identification
string unique to each client transaction sent downstream.
Implementations SHOULD reuse the branch-id value created for the client
transaction, with our without the magic cookie. The implementation MAY
generate a unique identification string to serve as a client transaction
identifier. Such an identification string MUST be unique at that server.
As each client transaction is created and activated, it will be
reflected in the log file. There is another idiosyncrasy that needs to
be accommodated, however. Because it may take some time for a downstream
UAS to elicit a response once contacted, the proxy or B2BUA MUST insert
a log file entry when the client transaction reaches the "Proceeding"
state upon the receipt of a provisional response. The next two lines
demonstrate that a response each was elicited from two forked branches:

 <allOneLine>
 1230756563 - - INVITE sip:bob@home.example.net
 sip:alice@example.com;tag=hy7 sip:bob@example.net
 7yhgt1@example.com - uyt67h CLIENT/hb76
 </allOneLine>
 <allOneLine>
 1230756564 - - INVITE sip:bob@carphone.example.net
 sip:alice@example.com;tag=hy7 sip:bob@example.net
 7yhgt1@example.com - uyt67h CLIENT/hb77
 </allOneLine>

Note that each log file entry for a client transaction contains the
CLIENT code and the corresponding client-transaction-id value ("hb76"
and "hb77" in the above example.)
The forked branches return multiple provisional responses followed by a
final response on each branch.

 1230756565 uyt67h hb76 100 INVITE sip:bob@example.net;tag=876v -
 1230756565 uyt67h hb77 100 INVITE sip:bob@example.net;tag=561t -
 1230756565 uyt67h hb76 180 INVITE sip:bob@example.net;tag=876v -
 1230756565 uyt67h hb77 180 INVITE sip:bob@example.net;tag=561t -
 1230756567 uyt67h hb77 182 INVITE sip:bob@example.net;tag=561t -
 1230756568 uyt67h hb76 500 INVITE sip:bob@example.net;tag=876v -
 <allOneLine>
 1230756568 uyt67h hb77 200 INVITE sip:bob@example.net;tag=561t
 "sip:bob@home.example.net"
 </allOneLine>

Bob's proxy will aggregate these responses and sends the best response
(200) upstream and sends an ACK to the branch that returned a 5xx-class
response:

 <allOneLine>
 1230756569 uyt67h - 200 INVITE sip:bob@example.net;tag=561t
 "sip:bob@home.example.net"
 </allOneLine>
 <allOneLine>
 1230756569 + - ACK sip:bob@home.example.net + + + - uyt67h
 CLIENT/hb76
 </allOneLine>

Because it is a stateful proxy, it receives an ACK from the upstream
client. It now has to create a client transaction to send this ACK
downstream:

 TOC

 <allOneLine>
 1230756570 192.168.1.10 - ACK sip:bob@home.example.net
 sip:alice@example.com;tag=hy7 sip:bob@example.net;tag=76y
 7yhgt1@example.com - t6y5 FORK/-
 </allOneLine>
 <allOneLine>
 1230756570 - - ACK sip:bob@home.example.net
 sip:alice@example.com;tag=hy7 sip:bob@example.net;tag=76y
 7yhgt1@example.com - t6y5 CLIENT/hb89
 </allOneLine>

The SIP CLF format string includes the minimum set of headers that, we
believe, lend themselves to trend analysis and serve as information that
may be deemed useful. The inclusion of the To and From tags and the
Call-ID as part of the format string allows automata to correlate later
transactions to earlier ones, while the addition of the correlation
directives similarly allows automata to associate an outgoing
transaction with an existing one.

7. Security Considerations

A log file by its nature reveals the both the state of the entity
producing it and the nature of the information being logged. To the
extent that this state should not be publicly accessible and that the
information is to be considered private, appropriate file and directory
permissions attached to the log file SHOULD be used. In the worst case,
public access to the SIP log file provides the same information that an
adversary can gain using network sniffing tools (assuming that the SIP
traffic is in clear text.) If all SIP traffic on a network segment is
encrypted, then special attention MUST be directed to the file and
directory permissions associated with the log file to preserve privacy
such that only a privileged user can access the contents of the log
file.
The SIP CLF format string includes the minimum set of headers that, we
believe, lend themselves to trend analysis and serve as information that
may be deemed useful. Other formats can be defined that include more
headers (and the body) from Section 4.2 (Data Elements). However, where
to draw a judicial line regarding the inclusion of non-mandatory headers
can be challenging. Clearly, the more information a SIP server logs, the
longer time the logging process will take, the more disk space the log
entry will consume, and the more potentially sensitive information could
be breached. Therefore, adequate tradeoffs should be taken in account
when creating a format string that logs more header fields than the ones
recommended by the CLF format string.
We believe that a SIP CLF format will aid in network and situational
security. Such a format could be integrated into MITRE's Common Event
Expression (CEE (Mitre Corporation, “Common Event Expression,” .) [8])
system, which could monitor the SIP CLF log file to produce CEE events

 TOC

 TOC

 TOC

 TOC

 TOC

that are fed into a detection system using CEE's common log transport
and syntax. It is also possible to imagine a wrapper that takes data
from a standard SIP CLF and turns it into an IDMEF-expressible syntax.
RFC 4765 (Debar, H., Curry, D., and B. Feinstein, “The Intrusion
Detection Message Exchange Format (IDMEF),” March 2007.) [9] defines
IDMEF, which are the data formats and exchange procedures for sharing
information of interest to intrusion detection and response systems and
to the management systems that may need to interact with them.
Implementers need to pay particular attention to buffer handling when
reading or writing log files. SIP CLF entries can be unbounded in
length. It would be reasonable for a full body dump to be thousands of
octets long. This is of particular importance to CLF log parsers, as
conforming SIP CLF log writers are free to add fields to the mandatory
fields described in this document.

8. IANA Considerations

This document does not require any considerations from IANA.

9. Acknowledgments

A big debt of gratitude to Dale Worley for a very close read of the
draft and many excellent suggestions to the text. Hadriel Kaplan and
Robert Sparks provided additional comments.

10. References

10.1. Normative References

[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, “SIP:
Session Initiation Protocol,” RFC 3261, June 2002 (TXT).

[2] Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).

10.2. Informative References

[3]

http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
http://www.rfc-editor.org/rfc/rfc3261.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

 TOC

Rieck, K., Wahl, S., Laskov, P., Domschitz, P., and K-R.
Muller, “A Self-learning System for Detection of Anomalous SIP
Messages,” Principles, Systems and Applications of IP
Telecommunications Services and Security for Next Generation
Networks (IPTComm), LNCS 5310, pp. 90-106, 2008.

[4] St. Johns, M., “Authentication server,” RFC 931, January 1985
(TXT).

[5] St. Johns, M., “Identification Protocol,” RFC 1413,
February 1993 (TXT).

[6] Peterson, J. and C. Jennings, “Enhancements for Authenticated
Identity Management in the Session Initiation Protocol (SIP),”
RFC 4474, August 2006 (TXT).

[7] Sparks, R., Hawrylyshen, A., Johnston, A., Rosenberg, J., and
H. Schulzrinne, “Session Initiation Protocol (SIP) Torture Test
Messages,” RFC 4475, May 2006 (TXT).

[8] Mitre Corporation, “Common Event Expression.”
[9] Debar, H., Curry, D., and B. Feinstein, “The Intrusion

Detection Message Exchange Format (IDMEF),” RFC 4765,
March 2007 (TXT).

Authors' Addresses

Vijay K. Gurbani
Bell Laboratories, Alcatel-Lucent
1960 Lucent Lane
Naperville, IL 60566
USA

Email: vkg@alcatel-lucent.com

Eric W. Burger
This Space for Sale
USA

Email: eburger@standardstrack.com
URI: http://www.standardstrack.com

Tricha Anjali
Illinois Institute of Technology
316 Siegel Hall
Chicago, IL 60616
USA

Email: tricha@ece.iit.edu

Humberto Abdelnur
INRIA
INRIA - Nancy Grant Est
Campus Scientifique
54506, Vandoeuvre-lès-Nancy Cedex
France

http://tools.ietf.org/html/rfc931
http://www.rfc-editor.org/rfc/rfc931.txt
mailto:stjohns@DARPA.MIL
http://tools.ietf.org/html/rfc1413
http://www.rfc-editor.org/rfc/rfc1413.txt
http://tools.ietf.org/html/rfc4474
http://tools.ietf.org/html/rfc4474
http://www.rfc-editor.org/rfc/rfc4474.txt
http://tools.ietf.org/html/rfc4475
http://tools.ietf.org/html/rfc4475
http://www.rfc-editor.org/rfc/rfc4475.txt
http://cee.mitre.org/
http://tools.ietf.org/html/rfc4765
http://tools.ietf.org/html/rfc4765
http://www.rfc-editor.org/rfc/rfc4765.txt
mailto:vkg@alcatel-lucent.com
mailto:eburger@standardstrack.com
http://www.standardstrack.com
mailto:tricha@ece.iit.edu

Email: Humberto.Abdelnur@loria.fr

Olivier Festor
INRIA
INRIA - Nancy Grant Est
Campus Scientifique
54506, Vandoeuvre-lès-Nancy Cedex
France

Email: Olivier.Festor@loria.fr

mailto:Humberto.Abdelnur@loria.fr
mailto:Olivier.Festor@loria.fr

	The Common Log File (CLF) format for the Session Initiation Protocol (SIP)DOCNAME
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	2. Terminology
	3. Relationship between SIP CLF and Call Detail Record
	4. CLF Format
	4.1. ABNF
	4.2. Data Elements
	4.3. Request CLF
	4.4. Response CLF
	5. A CLF for SIP Servers
	6. Proxy Servers and B2BUA Correlation Directives
	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses

