
NFSv4 Working Group David L. Black
Internet Draft Stephen Fridella
Expires: April 2006 EMC Corporation
 October 21, 2005

pNFS Block/Volume Layout
draft-black-pnfs-block-02.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that
 any applicable patent or other IPR claims of which he or she is
 aware have been or will be disclosed, and any of which he or she
 becomes aware will be disclosed, in accordance with Section 6 of
 BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire in April 2006.

Abstract

 Parallel NFS (pNFS) extends NFSv4 to allow clients to directly access
 file data on the storage used by the NFSv4 server. This ability to
 bypass the server for data access can increase both performance and
 parallelism, but requires additional client functionality for data
 access, some of which is dependent on the class of storage used. The
 main pNFS operations draft specifies storage-class-independent
 extensions to NFS; this draft specifies the additional extensions
 (primarily data structures) for use of pNFS with block and volume
 based storage.

Black Expires April 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft pNFS Block/Volume Layout October 2005

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents

1. Introduction...3
2. Background and Architecture....................................3

2.1. Data Structures: Extents and Extent Lists.................4
2.1.1. Layout Requests and Extent Lists.....................6
2.1.2. Client Copy-on-Write Processing......................7
2.1.3. Extents are Permissions..............................8

2.2. Volume Identification....................................10
3. Operations Issues...11

3.1. Layout Operation Ordering Considerations.................12
3.1.1. Client Side Considerations..........................12
3.1.2. Server Side Considerations..........................13

3.2. Recall Callback Completion and Robustness Concerns.......14
3.3. Crash Recovery Issues....................................15
3.4. Additional Features - Not Needed or Recommended..........16

4. Security Considerations.......................................17
5. Conclusions...17
6. Revision History..18
7. Acknowledgments...18
8. References..18

8.1. Normative References.....................................18
8.2. Informative References...................................18

 Author's Addresses...19
 Intellectual Property Statement..................................19
 Disclaimer of Validity...19
 Copyright Statement..20
 Acknowledgment...20

 NOTE: This is an early stage draft. It's still rough in places, with
 significant work to be done.

Black Expires April 2006 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft pNFS Block/Volume Layout October 2005

1. Introduction

 Figure 1 shows the overall architecture of a pNFS system:

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| +-----------+ |
 ||| |+-----------+ |
 ||+----------------||+-----------+ |
 |+-----------------||| | |
 +------------------+|| Storage |------------+
 +| Systems |
 +-----------+

 Figure 1 pNFS Architecture

 The overall approach is that pNFS-enhanced clients obtain sufficient
 information from the server to enable them to access the underlying
 storage (on the Storage Systems) directly. See [PNFS] for more
 details. This draft is concerned with access from pNFS clients to
 Storage Systems over storage protocols based on blocks and volumes,
 such as the SCSI protocol family (e.g., parallel SCSI, FCP for Fibre
 Channel, iSCSI, SAS). This class of storage is referred to as
 block/volume storage. While the Server to Storage System protocol is
 not of concern for interoperability here, it will typically also be a
 block/volume protocol when clients use block/volume protocols.

2. Background and Architecture

 The fundamental storage abstraction supported by block/volume storage
 is a storage volume consisting of a sequential series of fixed size
 blocks. This can be thought of as a logical disk; it may be realized
 by the Storage System as a physical disk, a portion of a physical
 disk or something more complex (e.g., concatenation, striping, RAID,
 and combinations thereof) involving multiple physical disks or
 portions thereof.

Black Expires April 2006 [Page 3]

Internet-Draft pNFS Block/Volume Layout October 2005

 A pNFS layout for this block/volume class of storage is responsible
 for mapping from an NFS file (or portion of a file) to the blocks of
 storage volumes that contain the file. The blocks are expressed as
 extents with 64 bit offsets and lengths using the existing NFSv4
 offset4 and length4 types. Clients must be able to perform I/O to
 the block extents without affecting additional areas of storage
 (especially important for writes), therefore extents MUST be aligned
 to 512-byte boundaries, and SHOULD be aligned to the block size used
 by the NFSv4 server in managing the actual filesystem (4 kilobytes
 and 8 kilobytes are common block sizes). This block size is
 available as an NFSv4 attribute - see Section 7.4 of [PNFS].

 This draft relies on the pNFS client indicating whether a requested
 layout is for read use or read-write use. A read-only layout may
 contain holes that are read as zero, whereas a read-write layout will
 contain allocated, but uninitialized storage in those holes (read as
 zero, can be written by client). This draft also supports client
 participation in copy on write by providing both read-only and
 uninitialized storage for the same range in a layout. Reads are
 initially performed on the read-only storage, with writes going to
 the uninitialized storage. After the first write that initializes
 the uninitialized storage, all reads are performed to that now-
 initialized writeable storage, and the corresponding read-only
 storage is no longer used.

 This draft draws extensively on the authors' familiarity with the the
 mapping functionality and protocol in EMC's HighRoad system. The
 protocol used by HighRoad is called FMP (File Mapping Protocol); it
 is an add-on protocol that runs in parallel with filesystem protocols
 such as NFSv3 to provide pNFS-like functionality for block/volume
 storage. While drawing on HighRoad FMP, the data structures and
 functional considerations in this draft differ in significant ways,
 based on lessons learned and the opportunity to take advantage of
 NFSv4 features such as COMPOUND operations. The support for client
 participation in copy-on-write is based on contributions from those
 with experience in that area, as HighRoad does not currently support
 client participation in copy-on-write.

2.1. Data Structures: Extents and Extent Lists

 A pNFS layout is a list of extents with associated properties. Each
 extent MUST be at least 512-byte aligned.

Black Expires April 2006 [Page 4]

Internet-Draft pNFS Block/Volume Layout October 2005

 struct extent {

 offset4 file_offset;/* the logical location in the file */

 length4 extent_length; /* the size of this extent in file and
 and on storage */

 pnfs_deviceid4 volume_ID; /* the logical volume/physical device
 that this extent is on */

 offset4 storage_offset;/* the logical location of
 this extent in the volume */

 extentState4 es; /* the state of this extent */

 };

 enum extentState4 {

 READ_WRITE_DATA = 0, /* the data located by this extent is valid
 for reading and writing. */

 READ_DATA = 1, /* the data located by this extent is valid for
 reading only; it may not be written. */

 INVALID_DATA = 2, /* the location is valid; the data is invalid.
 It is a newly (pre-) allocated extent.
 There is physical space. */

 NONE_DATA = 3, /* the location is invalid. It is a hole in the
 file. There is no physical space. */

 };

 The file_offset, extent_length, and es fields for an extent returned
 from the server are always valid. The interpretation of the
 storage_offset field depends on the value of es as follows:

 o READ_WRITE_DATA means that storage_offset is valid, and points to
 valid/initialized data that can be read and written.

 o READ_DATA means that storage_offset is valid and points to valid/
 initialized data which can only be read. Write operations are
 prohibited; the client may need to request a read-write layout.

Black Expires April 2006 [Page 5]

Internet-Draft pNFS Block/Volume Layout October 2005

 o INVALID_DATA means that storage_offset is valid, but points to
 invalid uninitialized data. This data must not be physically read
 from the disk until it has been initialized. A read request for
 an INVALID_DATA extent must fill the user buffer with zeros. Write
 requests must write whole blocks to the disk with bytes not
 initialized by the user must be set to zero. Any write to storage
 in an INVALID_DATA extent changes the written portion of the
 extent to READ_WRITE_DATA; the pNFS client is responsible for
 reporting this change via LAYOUTCOMMIT.

 o NONE_DATA means that storage_offset is not valid, and this extent
 may not be used to satisfy write requests. Read requests may be
 satisfied by zero-filling as for INVALID_DATA. NONE_DATA extents
 are returned by requests for readable extents; they are never
 returned if the request was for a writeable extent.

 The volume_ID field for an extent returned by the server is used to
 identify the logical volume on which this extent resides, see Section

2.2.

 The extent list lists all relevant extents in increasing order of the
 file_offset of each extent; any ties are broken by increasing order
 of the extent state (es).

 typedef extent extentList<MAX_EXTENTS>; /* MAX_EXTENTS = 256; */

 TODO: Define the actual layout and layoutupdate data structures as
 extent lists.

 TODO: Striping support. Layout independent striping will not be
 added to [PNFS], but it can help compact layout representations when
 the filesystem is striped across block/volume storage.

2.1.1. Layout Requests and Extent Lists

 Each request for a layout specifies at least three parameters:
 offset, desired size, and minimum size (the desired size is missing
 from the operations draft - see Section 3). If the status of a
 request indicates success, the extent list returned must meet the
 following criteria:

Black Expires April 2006 [Page 6]

Internet-Draft pNFS Block/Volume Layout October 2005

 o A request for a readable (but not writeable layout returns only
 READ_WRITE_DATA, READ_DATA or NONE_DATA extents (but not
 INVALID_DATA extents). A READ_WRITE_DATA extent MAY be returned
 by a pNFS server in a readable layout in order to avoid a
 subsequent client request for writing (ISSUE: Is that a good idea?
 It involves server second-guessing client, and the downside is the
 possible need for a recall callback).

 o A request for a writeable layout returns READ_WRITE_DATA or
 INVALID_DATA extents (but not NONE_DATA extents). It may also
 return READ_DATA extents only when the offset ranges in those
 extents are also covered by INVALID_DATA extents to permit writes.

 o The first extent in the list MUST contain the starting offset.

 o The total size of extents in the extent list MUST cover at least
 the minimum size and no more than the desired size. One exception
 is allowed: the total size MAY be smaller if only readable extents
 were requested and EOF is encountered.

 o Extents in the extent list MUST be logically contiguous for a
 read-only layout. For a read-write layout, the set of writable
 extents (i.e., excluding READ_DATA extents) MUST be logically
 contiguous. Every READ_DATA extent in a read-write layout MUST be
 covered by an INVALID_DATA extent. This overlap of READ_DATA and
 INVALID_DATA extents is the only permitted extent overlap.

 o Extents MUST be ordered in the list by starting offset, with
 READ_DATA extents preceding INVALID_DATA extents in the case of
 equal file_offsets.

2.1.2. Client Copy-on-Write Processing

 Distinguishing the READ_WRITE_DATA and READ_DATA extent types
 combined with the allowed overlap of READ_DATA extents with
 INVALID_DATA extents allows copy-on-write processing to be done by
 pNFS clients. In classic NFS, this operation would be done by the
 server. Since pNFS enables clients to do direct block access, it
 requires clients to participate in copy-on-write operations.

 When a client wishes to write data covered by a READ_DATA extent, it
 MUST have requested a writable layout from the server; that layout
 will contain INVALID_DATA extents to cover all the data ranges of
 that layout's READ_DATA extents. More precisely, for any file_offset
 range covered by one or more READ_DATA extents in a writable layout,
 the server MUST include one or more INVALID_DATA extents in the
 layout that cover the same file_offset range. The client MUST

Black Expires April 2006 [Page 7]

Internet-Draft pNFS Block/Volume Layout October 2005

 logically copy the data from the READ_DATA extent for any partial
 blocks of file_offset and range, merge in the changes to be written,
 and write the result to the INVALID_DATA extent for the blocks for
 that file_offset and range. That is, if entire blocks of data are to
 be overwritten by an operation, the corresponding READ_DATA blocks
 need not be fetched, but any partial-block writes must be merged with
 data fetched via READ_DATA extents before storing the result via
 INVALID_DATA extents. Storing of data in an INVALID_DATA extent
 converts the written portion of the INVALID_DATA extent to a
 READ_WRITE_DATA extent; all subsequent reads MUST be performed from
 this extent; the corresponding portion of the READ_DATA extent MUST
 NOT be used after storing data in an INVALID_DATA extent.

 In the LAYOUTCOMMIT operation that normally sends updated layout
 information back to the server, for writable data, some INVALID_DATA
 extents may be committed as READ_WRITE_DATA extents, signifying that
 the storage at the corresponding storage_offset values has been
 stored into and is now to be considered as valid data to be read.
 READ_DATA extents need not be sent to the server. For extents that
 the client receives via LAYOUTGET as INVALID_DATA and returns via
 LAYOUTCOMMIT as READ_WRITE_DATA, the server will understand that the
 READ_DATA mapping for that extent is no longer valid or necessary for
 that file.

 ISSUE: This assumes that all block/volume pNFS clients will support
 copy-on-write. Negotiating this would require additional server code
 to cope with clients that don't support this, which doesn't seem like
 a good idea.

2.1.3. Extents are Permissions

 Layout extents returned to pNFS clients grant permission to read or
 write; READ_DATA and NONE_DATA are read-only (NONE_DATA reads as
 zeroes), READ_WRITE_DATA and INVALID_DATA are read/write,
 (INVALID_DATA reads as zeros, any write converts it to
 READ_WRITE_DATA). This is the only client means of obtaining
 permission to perform direct I/O to storage devices; a pNFS client
 MUST NOT perform direct I/O operations that are not permitted by an
 extent held by the client. Client adherence to this rule places the
 pNFS server in control of potentially conflicting storage device
 operations, enabling the server to determine what does conflict and
 how to avoid conflicts by granting and recalling extents to/from
 clients.

 Block/volume class storage devices are not required to perform read
 and write operations atomically. Overlapping concurrent read and
 write operations to the same data may cause the read to return a

Black Expires April 2006 [Page 8]

Internet-Draft pNFS Block/Volume Layout October 2005

 mixture of before-write and after-write data. Overlapping write
 operations can be worse, as the result could be a mixture of data
 from the two write operations; this can be particularly nasty if the
 underlying storage is striped and the operations complete in
 different orders on different stripes. A pNFS server can avoid these
 conflicts by implementing a single writer XOR multiple readers
 concurrency control policy when there are multiple clients who wish
 to access the same data. This policy SHOULD be implemented when
 storage devices do not provide atomicity for concurrent read/write
 and write/write operations to the same data.

 A client that makes a layout request that conflicts with an existing
 layout delegation will be rejected with the error
 NFS4ERR_LAYOUTTRYLATER. This client is then expected to retry the
 request after a short interval. During this interval the server
 needs to recall the conflicting portion of the layout delegation from
 the client that currently holds it. This reject-and-retry approach
 does not prevent client starvation when there is contention for the
 layout of a particular file. For this reason a pNFS server SHOULD
 implement a mechanism to prevent starvation. One possibility is that
 the server can maintain a queue of rejected layout requests. Each
 new layout request can be checked to see if it conflicts with a
 previous rejected request, and if so, the newer request can be
 rejected. Once the original requesting client retries its request,
 its entry in the rejected request queue can be cleared, or the entry
 in the rejected request queue can be removed when it reaches a
 certain age.

 NFSv4 supports mandatory locks and share reservations. These are
 mechanisms that clients can use to restrict the set of I/O operations
 that are permissible to other clients. Since all I/O operations
 ultimately arrive at the NFSv4 server for processing, the server is
 in a position to enforce these restrictions. However, with pNFS
 layout delegations, I/Os will be issued from the clients that hold
 the delegations directly to the storage devices that host the data.
 These devices have no knowledge of files, mandatory locks, or share
 reservations, and are not in a position to enforce such restrictions.
 For this reason the NFSv4 server must not grant layout delegations
 that conflict with mandatory locks or share reservations. Further,
 if a conflicting mandatory lock request or a conflicting open request
 arrives at the server, the server must recall the part of the layout
 delegation in conflict with the request before processing the
 request.

Black Expires April 2006 [Page 9]

Internet-Draft pNFS Block/Volume Layout October 2005

2.2. Volume Identification

 Storage Systems such as storage arrays can have multiple physical
 network ports that need not be connected to a common network,
 resulting in a pNFS client having simultaneous multipath access to
 the same storage volumes via different ports on different networks.
 The networks may not even be the same technology - for example,
 access to the same volume via both iSCSI and Fibre Channel is
 possible, hence network address are difficult to use for volume
 identification. For this reason, this pNFS block layout identifies
 storage volumes by content, for example providing the means to match
 (unique portions of) labels used by volume managers. Any block pNFS
 system using this layout MUST support a means of content-based unique
 volume identification that can be employed via the data structure
 given here.

 A volume is content-identified by a disk signature made up of extents
 within blocks and contents that must match.

 block_device_addr_list - A list of the disk signatures for the
 physical volumes on which the file system resides. This is list of
 variable number of diskSigInfo structures. This is the
 device_addr_list<> as returned by GETDEVICELIST in [PNFS]

 typedef diskSigInfo block_device_addr_list<MAX_DEVICE>;
 /* disksignature info */

 where diskSigInfo is:

 struct diskSigInfo { /* used in DISK_SIGNATURE */
 diskSig ds; /* disk signature */

 pnfs_deviceid4 volume_ID; /* volume ID the server will use in
 extents. */

 };

 where diskSig is defined as:

 typedef sigComp diskSig<MAX_SIG_COMPONENTS>;

 struct sigComp { /* disk signature component */

 offset4 sig_offset; /* byte offset of component */

 length4 sig_length; /* byte length of component */

Black Expires April 2006 [Page 10]

Internet-Draft pNFS Block/Volume Layout October 2005

 sigCompContents contents; /* contents of this component of the
 signature (this is opaque) */

 };

 sigCompContents MUST NOT be interpreted as a zero-terminated string,
 as it may contain embedded zero-valued octets. It contains
 sig_length octets. There are no restrictions on alignment (e.g.,
 neither sig_offset nor sig_length are required to be multiples of 4).

3. Operations Issues

 NOTE: This section and its subsections are preserved for
 historical/review purposes only, as the [PNFS] draft has addressed
 all of these issues. The section and all subsections will be deleted
 in the next version of this draft.

 This section collects issues in the operations draft encountered in
 writing this block/volume layout draft. Most of these issues are
 expected to be resolved in draft-welch-pnfs-ops-03.txt .

 1. RESOLVED: LAYOUTGET provides minimum and desired (max) lengths to
 server.

 2. RESOLVED: Layouts are managed by offset and range; they are no
 longer treated as indivisible objects.

 3. RESOLVED: There is a callback for the server to convey a new EOF
 to the client.

 4. RESOLVED: HighRoad supports three types of layout recalls beyond
 range recalls: "everything in a file", "everything in a list of
 files", "everything in a filesystem". The first and third are
 supported in [PNFS] (set offset to zero and length to all 1's for
 everything in a file - [PNFS] implies this, but isn't explicit
 about it), and the second one can probably be done as a COMPOUND
 with reasonable effectiveness. LAYOUTRETURN supports return of
 everything in a file in a similar fashion (offset of zero, length
 of all 1's).

 5. RESOLVED: Access and Modify time behavior. LAYOUTCOMMIT operation
 sets both Access and Modify times. LAYOUTRETURN cannot set
 either time - use a SETATTR in a COMPOUND to do this (Q: Can this
 inadvertently make time run backwards?).

Black Expires April 2006 [Page 11]

https://datatracker.ietf.org/doc/html/draft-welch-pnfs-ops-03.txt

Internet-Draft pNFS Block/Volume Layout October 2005

 6. RESOLVED: The disk signature approach to volume identification
 appears to be supportable via the opaque pnfs_devaddr4 union
 element.

 7. RESOLVED: The LAYOUTCOMMIT operation has no LAYOUTRETURN side
 effects in -03. If it ever did, they were not intended.

3.1. Layout Operation Ordering Considerations

 This deserves its own subsection because there is some serious
 subtlety here.

 In contrast to NFSv4 callbacks that expect immediate responses,
 HighRoad layout callback responses are delayed to allow the client to
 perform any required commits, etc. prior to responding to the
 callback. This allows the reply to the callback to serve as an
 implicit return of the recalled range or ranges and tell the server
 that all callback related processing has been completed by the
 client. For consistency, pNFS should use the NFSv4 callback approach
 in which immediate responses are expected. As a result all returns
 of layout ranges MUST be explicit.

3.1.1. Client Side Considerations

 Consider a pNFS client that has issued a LAYOUTGET and then receives
 an overlapping recall callback for the same file. There are two
 possibilities, which the client cannot distinguish when the callback
 arrives:

 1. The server processed the LAYOUTGET before issuing the recall, so
 the LAYOUTGET response is in flight, and must be waited for
 because it may be carrying layout info that will need to be
 returned to deal with the recall callback.

 2. The server issued the callback before receiving the LAYOUTGET. The
 server will not respond to the LAYOUTGET until the recall callback
 is processed.

 This can cause deadlock, as the client must wait for the LAYOUTGET
 response before processing the recall in the first case, but that
 response will not arrive until after the recall is processed in the
 second case. The deadlock is avoided via a simple rule:

 RULE: A LAYOUTGET MUST be rejected with an error if there's an
 overlapping outstanding recall callback to the same client. The
 client MUST process the outstanding recall callback before
 retrying the LAYOUTGET.

Black Expires April 2006 [Page 12]

Internet-Draft pNFS Block/Volume Layout October 2005

 Now the client can wait for the LAYOUTGET response because it will
 come in both cases. This RULE also applies to the callback to send
 an updated EOF to the client.

 The resulting situation is still less than desired, because issuance
 of a recall callback indicates a conflict and potential contention at
 the server, so recall callbacks should be processed as fast as
 possible by clients. In the second case, if the client knows that
 the LAYOUTGET will be rejected, it is beneficial for the client to
 process the recall immediately without waiting for the LAYOUTGET
 rejection. To do so without added client complexity, the server
 needs to reject the LAYOUTGET even if it arrives at the server after
 the client operations that process the recall callback; if the client
 still wants that layout, it can reissue the LAYOUTGET.

 HighRoad uses the equivalent of a per-file layout stateid to enable
 this optimization. The layout stateid increments on each layout
 operation completion and callback issuance, and the current value of
 the layout stateid is sent in every operation response and every
 callback. If the initial layout stateid value is N, then in the
 first case above, the recall callback carries stateid N+2 indicating
 that the LAYOUTGET response is carrying N+1 and hence has to be
 waited for. In the second case above, the recall callback carries
 layout stateid N+1 indicating that the LAYOUTGET will be rejected
 with a stale layout stateid (N where N+1 or greater is current)
 whenever it arrives, and hence the callback can be processed
 immediately. This per-file layout stateid approach entails
 prohibiting concurrent callbacks to the for the same file to the same
 client, as server issuance of a new callback could cause stale layout
 stateid errors for operations that the client is performing to deal
 with an earlier recall callback.

 ISSUE: Does restricting all pNFS client operations on the same file
 to a single session help?

3.1.2. Server Side Considerations

 Consider a related situation from the pNFS server's point of view.
 The server has issued a recall callback and receives an overlapping
 LAYOUTGET for the same file before the LAYOUTRETURN(s) that respond
 to the recall callback. Again, there are two cases:

 1. The client issued the LAYOUTGET before processing the recall
 callback. The LAYOUTGET MUST be rejected according to the RULE in
 the previous subsection.

Black Expires April 2006 [Page 13]

Internet-Draft pNFS Block/Volume Layout October 2005

 2. The client issued the LAYOUTGET after processing the recall
 callback, but it arrived before the LAYOUTRETURN that completed
 that processing.

 The simplest approach is to apply the RULE and always reject the
 overlapping LAYOUTGET. The client has two ways to avoid this result
 - it can issue the LAYOUTGET as a subsequent element of a COMPOUND
 containing the LAYOUTRETURN that completes the recall callback, or it
 can wait for the response to that LAYOUTRETURN.

 This leads to a more general problem; in the absence of a callback if
 a client issues concurrent overlapping LAYOUTGET and LAYOUTRETURN
 operations, it is possible for the server to process them in either
 order. HighRoad forbids a client from doing this, as the per-file
 layout stateid will cause one of the two operations to be rejected
 with a stale layout stateid. This approach is simpler and produces
 better results by comparison to allowing concurrent operations, at
 least for this sort of conflict case, because server execution of
 operations in an order not anticipated by the client may produce
 results that are not useful to the client (e.g., if a LAYOUTRETURN is
 followed by a concurrent overlapping LAYOUTGET, but executed in the
 other order, the client will not retain layout extents for the
 overlapping range).

3.2. Recall Callback Completion and Robustness Concerns

 The discussion of layout operation ordering implicitly assumed that
 any callback results in a LAYOUTRETURN or set of LAYOUTRETURNs that
 match the range in the callback. This envisions that the pNFS client
 state for a file match the pNFS server state for that file and client
 regarding layout ranges and permissions. That may not be the best
 design assumption because:

 1. It may be useful for clients to be able to discard layout
 information without calling LAYOUTRETURN. If conflicts that
 require callbacks are rare, and a server can use a multi-file
 callback to recover per-client resources (e.g., via a multi-file
 recall operation based on some sort of LRU), the result may be
 significantly less client-server pNFS traffic.

 2. It may be similarly useful for servers to enhance information
 about what layout ranges are held by a client beyond what a client
 actually holds. In the extreme, a server could manage conflicts
 on a per-file basis, only issuing whole-file callbacks even though
 clients may request and be granted sub-file ranges.

Black Expires April 2006 [Page 14]

Internet-Draft pNFS Block/Volume Layout October 2005

 3. The synchronized state assumption is not robust to minor errors.
 A more robust design would allow for divergence between client and
 server and the ability to recover. It is vital that a client not
 assign itself layout permissions beyond what the server has
 granted and that the server not forget layout permissions that
 have been granted in order to avoid errors. OTOH, if a server
 believes that a client holds an extent that the client doesn't
 know about, it's useful for the client to be able to issue the
 LAYOUTRETURN that the server is expecting in response to a recall.

 At a minimum, in light of the above, it is useful for a server to be
 able to issue callbacks for layout ranges it has not granted to a
 client, and for a client to return ranges it does not hold. This
 leads to a couple of requirements:

 A pNFS client's final operation in processing a recall callback
 SHOULD be a LAYOUTRETURN whose range matches that in the callback.
 If the pNFS client holds no layout permissions in the range that
 has been recalled, it MUST respond with a LAYOUTRETURN whose range
 matches that in the callback.

 This avoids any need for callback cookies (server to client) that
 would have to be returned to indicate recall callback completion.

 For a callback to set EOF, the client MUST logically apply the new
 EOF before issuing the response to the callback, and MUST NOT issue
 any other pNFS operations before responding to the callback.

 ISSUE: HighRoad FMP also requires that LAYOUTCOMMIT operations be
 stalled at the server while an EOF callback is outstanding.

3.3. Crash Recovery Issues

 Client recovery for layout delegations works in much the same way as
 NFSv4 client recovery for other lock/delegation state. When an NFSv4
 client reboots, it will lose all information about the layout
 delegations that it previously owned. There are two methods by which
 the server can reclaim these resources and begin providing them to
 other clients. The first is through the expiry of the client's
 lock/delegation lease. If the client recovery time is longer than
 the lease period, the client's lock/delegation lease will expire and
 the server will know to reclaim any state held by the client. On the
 other hand, the client may recover in less time than it takes for the
 lease period to expire. In such a case, the client will be required
 to contact the server through the standard SETCLIENTID protocol. The
 server will find that the client's id matches the id of the previous
 client invocation, but that the verifier is different. The server

Black Expires April 2006 [Page 15]

Internet-Draft pNFS Block/Volume Layout October 2005

 uses this as a signal to reclaim all the state associated with the
 client's previous invocation.

 The server recovery case is slightly more complex. In general, the
 recovery process will again follow the standard NFSv4 recovery model:
 the client will discover that the server has rebooted when it
 receives an unexpected STALE_STATEID or STALE_CLIENTID reply from the
 server; it will then proceed to try to reclaim its previous
 delegations during the server's recovery grace period. However there
 is an important safety concern associated with layout delegations
 that does not come into play in the standard NFSv4 case. If a
 standard NFSv4 client makes use of a stale delegation, the
 consequence could be to deliver stale data to an application.
 However, the pNFS layout delegation enables the client to directly
 access the file system storage---if this access is not properly
 managed by the NFSv4 server the client can potentially corrupt the
 file system data or meta-data.

 Thus it is vitally important that the client discover that the server
 has rebooted as soon as possible, and that the client stops using
 stale layout delegations before the server gives the delegations away
 to other clients. To ensure this, the client must be implemented so
 that layout delegations are never used to access the storage after
 the client's lease timer has expired. This prohibition applies to
 all accesses, especially the flushing of dirty data to storage. If
 the client's lease timer expires because the client could not contact
 the server for any reason, the client MUST immediately stop using the
 layout delegation until the server can be contacted and the
 delegation can be officially recovered or reclaimed.

3.4. Additional Features - Not Needed or Recommended

 This subsection is a place to record things that existing SAN or
 clustered filesystems do that aren't needed or recommended for pNFS:

 o Callback for write-to-read downgrade. Writers tend to want to
 remain writers, so this feature may not be very useful.

 o HighRoad FMP implements several frequently used operation
 combinations as single RPCs for efficiency; these can be
 effectively handled by NFSv4 COMPOUNDs. One subtle difference is
 that a single RPC is treated as a single operation, whereas NFSv4
 COMPOUNDs are not atomic in any sense. This can result in
 operation ordering subtleties, e.g., having to set the new EOF
 before returning the layout extent that contains the new EOF,
 even within a single COMPOUND.

Black Expires April 2006 [Page 16]

Internet-Draft pNFS Block/Volume Layout October 2005

 o Queued request support. The HighRoad FMP protocol specification
 allows the server to return an "operation blocked" result code
 with a cookie that is later passed to the client in a "it's done
 now" callback. This has not proven to be of great use vs. having
 the client retry with some sort of back-off. Recommendations on
 how to back off should be added to the ops draft.

 o Additional client and server crash detection mechanisms. As a
 separate protocol, HighRoad FMP had to handle this on its own. As
 an NFSv4 extension, NFSv4's SETCLIENTID, STALE CLIENTID and STALE
 STATEID mechanisms combined with implicit lease renewal and (per-
 file) layout stateids should be sufficient for pNFS.

4. Security Considerations

 Certain security responsibilities are delegated to pNFS clients.
 Block/volume storage systems generally control access at a volume
 granularity, and hence pNFS clients have to be trusted to only
 perform accesses allowed by the layout extents it currently holds
 (e.g., and not access storage for files on which a layout extent is
 not held). This also has implications for some NFSv4 functionality
 outside pNFS. For instance, if a file is covered by a mandatory
 read-only lock, the server can ensure that only read-layout-
 delegations for the file are granted to pNFS clients. However, it is
 up to each pNFS client to ensure that the read layout delegation is
 used only to service read requests, and not to allow writes to the
 existing parts of the file. Since block/volume storage systems are
 generally not capable of enforcing such file-based security, in
 environments where pNFS clients cannot be trusted to enforce such
 policies, block/volume-based pNFS SHOULD NOT be used.

 <TBD: Need discussion about security for block/volume protocol vis-a-
 vis NFSv4 security. Client may not even use same identity for both
 (e.g., for Fibre Channel, same identity as NFSv4 is impossible).
 Need to talk about consistent security protection of data via NFSv4
 vs. direct block/volume access. Some of this extends discussion in
 previous paragraph about client responsibility for security as part
 of overall system.>

5. Conclusions

 <TBD: Add any conclusions>

6. IANA Considerations

 There are no IANA considerations in this document. All pNFS IANA
 Considerations are covered in [PNFS].

Black Expires April 2006 [Page 17]

Internet-Draft pNFS Block/Volume Layout October 2005

7. Revision History

 -00: Initial Version

 -01: Rework discussion of extents as locks to talk about extents
 granting access permissions. Rewrite operation ordering section to
 discuss deadlocks and races that can cause problems. Add new section
 on recall completion. Add client copy-on-write based on text from
 Craig Everhart.

 -02: Fix glitches in extent state descriptions. Describe most issues
 as RESOLVED. Most of Section 3 has been incorporated into the [PNFS]
 draft, add NOTE to that effect and say that it will be deleted in the
 next version of this draft (which should be a draft-ietf-nfsv4
 draft). Cleaning up a number of things have been left to that draft
 revision, including the interlocks with the types in [PNFS], layout
 striping support, and finishing the Security Considerations section.

8. Acknowledgments

 This draft draws extensively on the authors' familiarity with the the
 mapping functionality and protocol in EMC's HighRoad system. The
 protocol used by HighRoad is called FMP (File Mapping Protocol); it
 is an add-on protocol that runs in parallel with filesystem protocols
 such as NFSv3 to provide pNFS-like functionality for block/volume
 storage. While drawing on HighRoad FMP, the data structures and
 functional considerations in this draft differ in significant ways,
 based on lessons learned and the opportunity to take advantage of
 NFSv4 features such as COMPOUND operations. The design to support
 pNFS client participation in copy-on-write is based on text and ideas
 contributed by Craig Everhart of IBM.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [PNFS] Goodson, G., et. al. "NFSv4 pNFS Extensions", draft-ietf-
nfsv4-pnfs-00.txt, Work in Progress, October 2005.

 TODO: Need to reference RFC 3530.

9.2. Informative References

 OPEN ISSUE: HighRoad and/or SAN.FS references?

Black Expires April 2006 [Page 18]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-pnfs-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-pnfs-00.txt
https://datatracker.ietf.org/doc/html/rfc3530

Internet-Draft pNFS Block/Volume Layout October 2005

Author's Addresses

 David L. Black
 EMC Corporation
 176 South Street
 Hopkinton, MA 01748

 Phone: +1 (508) 293-7953
 Email: black_david@emc.com

 Stephen Fridella
 EMC Corporation
 32 Coslin Drive
 Southboro, MA 01772

 Phone: +1 (508) 305-8512
 Email: fridella_stephen@emc.com

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Black Expires April 2006 [Page 19]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Internet-Draft pNFS Block/Volume Layout October 2005

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Black Expires April 2006 [Page 20]

https://datatracker.ietf.org/doc/html/bcp78

