
DISPATCH T. Asveren
Internet-Draft Ribbon
Intended status: Standards Track April 13, 2018
Expires: October 15, 2018

HTTP Overload Control Mechanism
draft-asveren-dispatch-http-overload-control-00

Abstract

 This document specifies a generic overload control mechanism for
 HTTP/HTTPS applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 15, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Asveren Expires October 15, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP Overload Control April 2018

Table of Contents

1. Overview . 2
2. Requirements Language . 3
3. Overload Control Mechanism 3
3.1. Algorithm . 3
3.2. Capability Negotiation 3
3.3. Overload-Control Header 4
3.4. Procedures at the Client 4
3.5. Procedures at the Server 5
3.6. Procedures at the Proxy 5

4. Formal Syntax . 5
5. IANA Considerations . 5
6. Security Considerations 5
7. Acknowledgements . 5
8. Appendix A: Example Message Flow 6
9. Informative References 6

 Author's Address . 7

1. Overview

 HTTP is used between clients and servers for request/response based
 interaction in the context of many different applications. Some of
 these applications have tight timing requirements for receiving a
 response. For example, a signing request done toward a Signing
 Server in the context of STIR RFC 8224 [RFC8224] usually is
 associated with a real time session setup procedure which needs to
 complete in a given time frame. For such applications it is
 imperative to consider the actual load on a server to meet the timing
 requirements. Current HTTP overload control relies on using 503 with
 a Retry-After header indicating for how long no request should be
 sent to a server. This, although sufficient for certain
 applications, does not always provide satisfactory results as it
 allows only binary control of the load following a step function
 pattern. TCP congestion window does not address this issue either as
 it does not allow an application direct control and is impacted by
 network conditions like latency, jitter, packet loss. Therefor there
 is a need for a mechanism which can address the overload control
 needs of HTTP applications in general for which existing mechanisms
 are not sufficient. Similar phenomena is observed for other
 protocols as well. For example, for SIP the issue is addressed by
 defining a specific mechanism in RFC 7339 [RFC7339]. Therefore This
 document specifies a generic overload control mechanism for HTTP/
 HTTPS applications.

 The notion of applying different drop probabilities for separate
 categories is supported as well. A category is an abstract construct
 as far as this specification is concerned. It pertains to different

https://datatracker.ietf.org/doc/html/rfc8224
https://datatracker.ietf.org/doc/html/rfc8224
https://datatracker.ietf.org/doc/html/rfc7339
https://datatracker.ietf.org/doc/html/rfc7339

Asveren Expires October 15, 2018 [Page 2]

Internet-Draft HTTP Overload Control April 2018

 policy characteristics and is meaningful in the context of an
 application. It, for example, may refer to different priority levels
 for requests, e.g. regular, emergency, government agency.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

3. Overload Control Mechanism

3.1. Algorithm

 The overload control algorithm described in this document relies on
 the concept of dropping a request with a certain probability on the
 client which otherwise would bee sent to a particular server.

 This approach is favored considering that neither the number of
 clients sending requests to a server nor the volume of requests from
 a client is known a priori at a given point in time and can change
 dynamically. This dynamic nature makes any alternative approach
 which would utilize a quota based control on a per client basis
 unviable. An efficient solution should act in a as fair as possible
 way on the aggregate of requests received by a server from all
 clients.

3.2. Capability Negotiation

 A client supporting this specification SHOULD add a Pragma header to
 a request for which overload control is applicable with the value
 "overload-control". A client MAY choose to send this Pragma header
 only for the first or some requests to the server.

 Example:
 Pragma: overload-control

 A server supporting this specification MUST interpret presence of the
 Pragma header with the value "overload-control" as an indication that
 client supports this specification and SHOULD follow server related
 semantics defined in this specification. Receipt of a single such
 request SHOULD be interpreted as the client supporting the overload
 control mechanism.

 A server not supporting this specification ignores a Pragma header
 with the value "overload-control".

https://datatracker.ietf.org/doc/html/rfc2119

Asveren Expires October 15, 2018 [Page 3]

Internet-Draft HTTP Overload Control April 2018

 A server MAY assume that a client supports this specification even if
 no Pragma header with the value "overload-control" is received.

3.3. Overload-Control Header

 A new entity header named "Overload-Control" is defined and used in
 HTTP responses.

 It is used to carry information about drop probability for messages
 in a specified category.

 TBD: A parameter indicating validity time will be added.

 Example:
 Overload-Control: oc=1, odp=30; oc=2, odp=45; oc, odp=60

 o Drop category1 requests with a probability of 30%

 o Drop category2 requests with a probability of 45%

 o Drop category3 requests with a probability of 60%

 Drop probability indicated by an Overload-Control header without a
 category parameter applies to all categories.

3.4. Procedures at the Client

 A client supporting this specification SHOULD drop a request which
 would be sent to a server based on the probability value received in
 Overload-Control header received in the latest response. This SHOULD
 be done as follows:

 Create a local table for all categories. All categories initial drop
 probability is "0".

 When an Overload-Control header is received:

 o Update the drop percentage for the category in the local table.

 o Drop a request based on the probability value for its category in
 the local table.

 A client MUST interpret and honor a Retry-After header according to
 existing HTTP standard even if it supports and uses overload conytol
 mechanism specified in this document.

Asveren Expires October 15, 2018 [Page 4]

Internet-Draft HTTP Overload Control April 2018

3.5. Procedures at the Server

 A server supporting this specification SHOULD determine its own
 overload state. How this is done is implementation dependent and not
 subject to standardization in the context of this document.

 A server SHOULD add an Overload-Control header indicating the
 category and the drop probability of requests to a response if its
 overload state changes. The mapping between actual overload state
 and drop probability is implementation dependent.

3.6. Procedures at the Proxy

 There is no specific functionality required from a Proxy in the
 context of this specification. Proxies will transparently pass
 Pragma headers in requests and Overload-Control headers in responses.

4. Formal Syntax

 The syntax of the Overload-Control header is described as follows:

 Overload-Control = "Overload-Control" HCOLON 1*(*(overload-
category)1(overload-drop-probability))
 overload-category = "oc COMMA" EQUAL overload-category-value
 overload-category-value = 1*ALPHA
 overload-drop-probability = "odp" EQUAL overload-drop-probability-
value
 overload-drop-probability-value = 1DIGIT/2DIGIT/"100"

5. IANA Considerations

 Overload-Control is defined as an "entity" header and does not need
 to be registered in IANA "Permanent Header Field Names" Registry
 List.

 TBD: May change based on input from experts

6. Security Considerations

 HTTPS SHOULD be used between client and server if overload control
 mechanism is used. This is needed to prevent attackers to change the
 drop probability used by clients to a value other than the one
 intended by the server.

7. Acknowledgements

Asveren Expires October 15, 2018 [Page 5]

Internet-Draft HTTP Overload Control April 2018

8. Appendix A: Example Message Flow

 Client-1 Client-2 Server
 | | |
 Sends all requests | |
 | | |
 | | |
 |-------Request(category1)--------------->|
 | | |
 | | |
 |<------Response--------------------------|
 | | |
 | | |
 | | Overload condition changes
 | | It is decided to drop
 | | 50% of category1 requests
 | | |
 | | |
 |-------Request-------------------------->|
 | | |
 |<-Response(Overload-Control: oc=1;odp=50)|
 | | |
 Drops category1 requests | |
 with a 50% probability | |
 Sends all category2 requests |
 | | |
 | | |
 | Sends all requests |
 | | |
 | |--Request--------------->|
 | | |
 | |<-Response(Overload-Control: oc=1;odp=50)
 | | |
 | Drops category1 requests |
 | with a 50% probability |
 | Sends all category2 requests |
 | | |
 | | |
 | | |

9. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Asveren Expires October 15, 2018 [Page 6]

Internet-Draft HTTP Overload Control April 2018

 [RFC7339] Gurbani, V., Ed., Hilt, V., and H. Schulzrinne, "Session
 Initiation Protocol (SIP) Overload Control", RFC 7339,
 DOI 10.17487/RFC7339, September 2014,
 <https://www.rfc-editor.org/info/rfc7339>.

Author's Address

 Tolga Asveren
 Ribbon Communications
 Freehold, NJ 07728
 USA

 Email: tasveren@rbbn.com

Asveren Expires October 15, 2018 [Page 7]

https://datatracker.ietf.org/doc/html/rfc7339
https://www.rfc-editor.org/info/rfc7339

