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Abstract

   This document specifies a generic overload control mechanism for
   HTTP/HTTPS applications.
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1.  Overview

   HTTP is used between clients and servers for request/response based
   interaction in the context of many different applications.  Some of
   these applications have tight timing requirements for receiving a
   response.  For example, a signing request done toward a Signing
   Server in the context of STIR RFC 8224 [RFC8224] usually is
   associated with a real time session setup procedure which needs to
   complete in a given time frame.  For such applications it is
   imperative to consider the actual load on a server to meet the timing
   requirements.  Current HTTP overload control relies on using 503 with
   a Retry-After header indicating for how long no request should be
   sent to a server.  This, although sufficient for certain
   applications, does not always provide satisfactory results as it
   allows only binary control of the load following a step function
   pattern.  TCP congestion window does not address this issue either as
   it does not allow an application direct control and is impacted by
   network conditions like latency, jitter, packet loss.  Therefor there
   is a need for a mechanism which can address the overload control
   needs of HTTP applications in general for which existing mechanisms
   are not sufficient.  Similar phenomena is observed for other
   protocols as well.  For example, for SIP the issue is addressed by
   defining a specific mechanism in RFC 7339 [RFC7339].  Therefore This
   document specifies a generic overload control mechanism for HTTP/
   HTTPS applications.

   The notion of applying different drop probabilities for separate
   categories is supported as well.  A category is an abstract construct
   as far as this specification is concerned.  It pertains to different

https://datatracker.ietf.org/doc/html/rfc8224
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   policy characteristics and is meaningful in the context of an
   application.  It, for example, may refer to different priority levels
   for requests, e.g. regular, emergency, government agency.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119.

3.  Overload Control Mechanism

3.1.  Algorithm

   The overload control algorithm described in this document relies on
   the concept of dropping a request with a certain probability on the
   client which otherwise would bee sent to a particular server.

   This approach is favored considering that neither the number of
   clients sending requests to a server nor the volume of requests from
   a client is known a priori at a given point in time and can change
   dynamically.  This dynamic nature makes any alternative approach
   which would utilize a quota based control on a per client basis
   unviable.  An efficient solution should act in a as fair as possible
   way on the aggregate of requests received by a server from all
   clients.

3.2.  Capability Negotiation

   A client supporting this specification SHOULD add a Pragma header to
   a request for which overload control is applicable with the value
   "overload-control".  A client MAY choose to send this Pragma header
   only for the first or some requests to the server.

   Example:
   Pragma: overload-control

   A server supporting this specification MUST interpret presence of the
   Pragma header with the value "overload-control" as an indication that
   client supports this specification and SHOULD follow server related
   semantics defined in this specification.  Receipt of a single such
   request SHOULD be interpreted as the client supporting the overload
   control mechanism.

   A server not supporting this specification ignores a Pragma header
   with the value "overload-control".

https://datatracker.ietf.org/doc/html/rfc2119
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   A server MAY assume that a client supports this specification even if
   no Pragma header with the value "overload-control" is received.

3.3.  Overload-Control Header

   A new entity header named "Overload-Control" is defined and used in
   HTTP responses.

   It is used to carry information about drop probability for messages
   in a specified category.

   TBD: A parameter indicating validity time will be added.

      Example:
      Overload-Control: oc=1, odp=30; oc=2, odp=45; oc, odp=60

   o  Drop category1 requests with a probability of 30%

   o  Drop category2 requests with a probability of 45%

   o  Drop category3 requests with a probability of 60%

   Drop probability indicated by an Overload-Control header without a
   category parameter applies to all categories.

3.4.  Procedures at the Client

   A client supporting this specification SHOULD drop a request which
   would be sent to a server based on the probability value received in
   Overload-Control header received in the latest response.  This SHOULD
   be done as follows:

   Create a local table for all categories.  All categories initial drop
   probability is "0".

   When an Overload-Control header is received:

   o  Update the drop percentage for the category in the local table.

   o  Drop a request based on the probability value for its category in
      the local table.

   A client MUST interpret and honor a Retry-After header according to
   existing HTTP standard even if it supports and uses overload conytol
   mechanism specified in this document.
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3.5.  Procedures at the Server

   A server supporting this specification SHOULD determine its own
   overload state.  How this is done is implementation dependent and not
   subject to standardization in the context of this document.

   A server SHOULD add an Overload-Control header indicating the
   category and the drop probability of requests to a response if its
   overload state changes.  The mapping between actual overload state
   and drop probability is implementation dependent.

3.6.  Procedures at the Proxy

   There is no specific functionality required from a Proxy in the
   context of this specification.  Proxies will transparently pass
   Pragma headers in requests and Overload-Control headers in responses.

4.  Formal Syntax

   The syntax of the Overload-Control header is described as follows:

      Overload-Control = "Overload-Control" HCOLON 1*(*(overload-
category)1(overload-drop-probability))
          overload-category = "oc COMMA" EQUAL overload-category-value
          overload-category-value = 1*ALPHA
          overload-drop-probability = "odp" EQUAL overload-drop-probability-
value
          overload-drop-probability-value = 1DIGIT/2DIGIT/"100"

5.  IANA Considerations

   Overload-Control is defined as an "entity" header and does not need
   to be registered in IANA "Permanent Header Field Names" Registry
   List.

   TBD: May change based on input from experts

6.  Security Considerations

   HTTPS SHOULD be used between client and server if overload control
   mechanism is used.  This is needed to prevent attackers to change the
   drop probability used by clients to a value other than the one
   intended by the server.

7.  Acknowledgements
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8.  Appendix A: Example Message Flow

            Client-1        Client-2                  Server
              |               |                         |
    Sends all requests        |                         |
              |               |                         |
              |               |                         |
              |-------Request(category1)--------------->|
              |               |                         |
              |               |                         |
              |<------Response--------------------------|
              |               |                         |
              |               |                         |
              |               |              Overload condition changes
              |               |              It is decided to drop
              |               |              50% of category1 requests
              |               |                         |
              |               |                         |
              |-------Request-------------------------->|
              |               |                         |
              |<-Response(Overload-Control: oc=1;odp=50)|
              |               |                         |
     Drops category1 requests |                         |
     with a 50% probability   |                         |
     Sends all category2 requests                       |
              |               |                         |
              |               |                         |
              |       Sends all requests                |
              |               |                         |
              |               |--Request--------------->|
              |               |                         |
              |               |<-Response(Overload-Control: oc=1;odp=50)
              |               |                         |
              |      Drops category1 requests           |
              |      with a 50% probability             |
              |      Sends all category2 requests       |
              |               |                         |
              |               |                         |
              |               |                         |
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