Skip to main content

The Wire Image of a Network Protocol
draft-trammell-wire-image-01

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Replaced".
Authors Brian Trammell , Mirja Kühlewind
Last updated 2017-12-07
Replaced by draft-iab-wire-image, RFC 8546
RFC stream (None)
Formats
Additional resources
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-trammell-wire-image-01
Network Working Group                                        B. Trammell
Internet-Draft                                             M. Kuehlewind
Intended status: Informational                                ETH Zurich
Expires: June 10, 2018                                 December 07, 2017

                  The Wire Image of a Network Protocol
                      draft-trammell-wire-image-01

Abstract

   This document defines the wire image, an abstraction of the
   information available to an on-path non-participant in a networking
   protocol.  This abstraction is intended to shed light on current
   discussions within the IETF on the implications on increased
   encryption has for network functions that use the wire image.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 10, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Trammell & Kuehlewind     Expires June 10, 2018                 [Page 1]
Internet-Draft                 Wire Image                  December 2017

1.  Introduction

   A protocol specification defines a set of behaviors for each
   participant in the protocol: which lower-layer protocols are used for
   which services, how messages are formatted and protected, which
   participant sends which message when, how each participant should
   respond to each message, and so on.

   Implicit in a protocol specification is the information the protocol
   radiates toward nonparticipant observers of the messages sent among
   participants.  Any information that has a clear definition in the
   protocol's message format(s), or is implied by that definition, and
   is not cryptographically confidentiality-protected can be
   unambiguously interpreted by those observers.

   This information comprises the protocol's wire image, which we define
   and discuss in this document.  It is the wire image, not the
   protocol's specification, that determines how third parties on the
   network paths among protocol participants will interact with that
   protocol.

   Several documents currently under discussion in IETF working groups
   and the IETF in general, for example [QUIC-MANAGEABILITY],
   [EFFECT-ENCRYPT], and [TRANSPORT-ENCRYPT], discuss in part impacts on
   the third-party use of wire images caused by a migration from
   protocols whose wire images are largely not confidentiality protected
   (e.g.  HTTP over TCP) to protocols whose wire images are
   confidentiality protected (e.g.  H2 over QUIC).

   This document presents the wire image abstraction with the hope that
   it can shed some light on these discussions.

2.  Definition

   More formally, the wire image of a protocol consists of the sequence
   of messages sent by each participant in the protocol, each expressed
   as a sequence of bits with an associated arbitrary-precision time at
   which it was sent.

3.  Discussion

   This definition is so vague as to be difficult to apply to protocol
   analysis, but it does illustrate some important properties of the
   wire image.

   Key is that the wire image is not limited to merely "the unencrypted
   bits in the header".  In particular, interpacket timing, packet size,
   and message sequence information can be used to infer other

Trammell & Kuehlewind     Expires June 10, 2018                 [Page 2]
Internet-Draft                 Wire Image                  December 2017

   parameters of the behavior of the protocol, or to fingerprint
   protocols and/or specific implementations of the protocol; see
   Section 3.1.

   An important implication of this property is that a protocol which
   uses confidentiality protection for the headers it needs to operate
   can be deliberately designed to have a specified wire image that is
   separate from that machinery; see Section 3.3.  Note that this is a
   capability unique to encrypted protocols.  Parts of a wire image may
   also be made visible to devices on path, but immutable through end-
   to-end integrity protection; see Section 3.2.

   Portions of the wire image of a protocol that are neither
   confidentiality-protected nor integrity-protected are writable by
   devices on the path(s) between the endpoints using the protocol.  A
   protocol with a wire image that is largely writable operating over a
   path with devices that understand the semantics of the protocol's
   wire image can modify it, in order to induce behaviors at the
   protocol's participants.  This is the case with TCP in the current
   Internet.

   Note also that the wire image is multidimensional.  This implies that
   the name "image" is not merely metaphorical, and that general image
   recognition techniques may be applicable to extracting paterns and
   information from it.

3.1.  Obscuring timing and sizing information

   Cryptography can protect the confidentiality of a protocol's headers,
   to the extent that forwarding devices do not need the
   confidentiality-protected information for basic forwarding
   operations.  However, it cannot be applied to protecting non-header
   information in the wire image.  Of particular interest is the
   sequence of packet sizes and the sequence of packet times.  These are
   characteristic of the operation of the protocol.  While packets
   cannot be made smaller than their information content, nor sent
   faster than processing time requirements at the sender allow, a
   sender may use padding to increase the size of packets, and add delay
   to transmission scheduling in order to increase interpacket delay.
   However, it does this as the expense of bandwidth efficiency and
   latency, so this technique is limited to the application's tolerance
   for latency and bandwidth inefficiency.

3.2.  Integrity Protection of the Wire Image

   Adding end-to-end integrity protection to portions of the wire image
   makes it impossible for on-path devices to modify them without
   detection by the endpoints, which can then take action in response to

Trammell & Kuehlewind     Expires June 10, 2018                 [Page 3]
Internet-Draft                 Wire Image                  December 2017

   those modifications, making these portions of the wire image
   effectively immutable.  However, they can still be observed by
   devices on path.  This allows the creation of signals intended by the
   endpoints solely for the consumption of these on-path devices.

   Integrity protection can only practically be applied to the sequence
   of bits in each packet, which implies that a protocol's visible wire
   image cannot be made completely immutable in a packet-switched
   network.  Interarrival timings, for instance, cannot be easily
   protected, as the observable delay sequence is modified as packets
   move through the network and experience different delays on different
   links.  Message sequences are also not practically protectable, as
   packets may be dropped or reordered at any point in the network, as a
   consequence of the network's operation.  Intermediate systems with
   knowledge of the protocol semantics in the readable portion of the
   wire image can also purposely delay or drop packets in order to
   affect the protocol's operation.

3.3.  Engineering the Wire Image

   Understanding the nature of a protocol's wire image allows it to be
   engineered.  The general principle at work here, observed through
   experience with deployability and non-deployability of protocols at
   the network and transport layers in the Internet, is that all
   observable parts of a protocol's wire image will eventually ossify,
   and become difficult or impossible to change in future extensions or
   revisions of the protocol.

   A network function which serves a purpose useful to its deployer will
   use the information it needs from the wire image, and will tend to
   get that information from the wire image in the simplest way
   possible.  A protocol's wire image should therefore be designed to
   explicitly expose information to those network functions in an
   obvious way, and to expose as little other information as possible.

   However, even when information is explicitly provided to the network,
   any information that is exposed by the wire image, even that
   information not intended to be consumed by an observer, must be
   designed carefully as it might ossify, making it immutable for future
   versions of the protocol.  For example, information needed to support
   decryption by the receiving endpoint (cryptographic handshakes,
   sequence numbers, and so on) may be used by the path for its own
   purposes.

   Since they are separate from the signals that drive an encrypted
   protocol's mechanisms, the veracity of integrity-protected signals in
   an engineered wire image intended for consumption by the path may not
   be verifiable by on-path devices; see [PATH-SIGNALS].  Indeed, any

Trammell & Kuehlewind     Expires June 10, 2018                 [Page 4]
Internet-Draft                 Wire Image                  December 2017

   two endpoints with a secret channel between them (in this case, the
   encrypted protocol itself) may collude to change the semantics and
   information content of these signals.  This is an unavoidable
   consequence of the separation of the wire image from the protocol's
   operation afforded by confidentiality protection of the protocol's
   headers.

4.  Acknowledgments

   Thanks to Martin Thomson and Thomas Fossati for discussions that have
   improved this document.

   This work is partially supported by the European Commission under
   Horizon 2020 grant agreement no. 688421 Measurement and Architecture
   for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
   for Education, Research, and Innovation under contract no. 15.0268.
   This support does not imply endorsement.

5.  Informative References

   [EFFECT-ENCRYPT]
              Moriarty, K. and A. Morton, "Effect of Pervasive
              Encryption on Operators", draft-mm-wg-effect-encrypt-13
              (work in progress), October 2017.

   [PATH-SIGNALS]
              Hardie, T., "Path signals", draft-hardie-path-signals-02
              (work in progress), November 2017.

   [QUIC-MANAGEABILITY]
              Kuehlewind, M. and B. Trammell, "Manageability of the QUIC
              Transport Protocol", draft-ietf-quic-manageability-01
              (work in progress), October 2017.

   [TRANSPORT-ENCRYPT]
              Fairhurst, G. and C. Perkins, "The Impact of Transport
              Header Encryption on Operation and Evolution of the
              Internet", draft-fairhurst-tsvwg-transport-encrypt-04
              (work in progress), September 2017.

Authors' Addresses

Trammell & Kuehlewind     Expires June 10, 2018                 [Page 5]
Internet-Draft                 Wire Image                  December 2017

   Brian Trammell
   ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Email: ietf@trammell.ch

   Mirja Kuehlewind
   ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Email: mirja.kuehlewind@tik.ee.ethz.ch

Trammell & Kuehlewind     Expires June 10, 2018                 [Page 6]