Skip to main content

A YANG Data Model for IP Management
RFC 8344

Document Type RFC - Proposed Standard (March 2018)
Obsoletes RFC 7277
Author Martin Björklund
Last updated 2018-12-19
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
IESG Responsible AD Benoît Claise
Send notices to (None)
RFC 8344
Internet Engineering Task Force (IETF)                      M. Bjorklund
Request for Comments: 8344                                Tail-f Systems
Obsoletes: 7277                                               March 2018
Category: Standards Track
ISSN: 2070-1721

                  A YANG Data Model for IP Management

Abstract

   This document defines a YANG data model for management of IP
   implementations.  The data model includes configuration and system
   state.

   The YANG data model in this document conforms to the Network
   Management Datastore Architecture defined in RFC 8342.

   This document obsoletes RFC 7277.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8344.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Bjorklund                    Standards Track                    [Page 1]
RFC 8344                   YANG IP Management                 March 2018

Table of Contents

   1. Introduction ....................................................2
      1.1. Summary of Changes from RFC 7277 ...........................2
      1.2. Terminology ................................................3
      1.3. Tree Diagrams ..............................................3
   2. IP Data Model ...................................................4
   3. Relationship to the IP-MIB ......................................5
   4. IP Management YANG Module .......................................7
   5. IANA Considerations ............................................27
   6. Security Considerations ........................................27
   7. References .....................................................29
      7.1. Normative References ......................................29
      7.2. Informative References ....................................31
   Appendix A. Example: NETCONF <get-config> Reply ...................32
   Appendix B. Example: NETCONF <get-data> Reply .....................33
   Acknowledgments ...................................................34
   Author's Address ..................................................34

1.  Introduction

   This document defines a YANG data model [RFC7950] for management of
   IP implementations.

   The data model covers configuration of per-interface IPv4 and IPv6
   parameters as well as mappings of IP addresses to link-layer
   addresses.  It also provides information about which IP addresses are
   operationally used and which link-layer mappings exist.
   Per-interface parameters are added through augmentation of the
   interface data model defined in [RFC8343].

   This version of the IP data model supports the Network Management
   Datastore Architecture (NMDA) [RFC8342].

1.1.  Summary of Changes from RFC 7277

   The "ipv4" and "ipv6" subtrees with "config false" data nodes in the
   "/interfaces-state/interface" subtree are deprecated.  All
   "config false" data nodes are now present in the "ipv4" and "ipv6"
   subtrees in the "/interfaces/interface" subtree.

   Servers that do not implement NMDA or that wish to support clients
   that do not implement NMDA MAY implement the deprecated "ipv4" and
   "ipv6" subtrees in the "/interfaces-state/interface" subtree.

Bjorklund                    Standards Track                    [Page 2]
RFC 8344                   YANG IP Management                 March 2018

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The following terms are defined in [RFC8342] and are not redefined
   here:

   o  client

   o  server

   o  configuration

   o  system state

   o  intended configuration

   o  running configuration datastore

   o  operational state

   o  operational state datastore

   The following terms are defined in [RFC7950] and are not redefined
   here:

   o  augment

   o  data model

   o  data node

   The terminology for describing YANG data models is found in
   [RFC7950].

1.3.  Tree Diagrams

   Tree diagrams used in this document follow the notation defined in
   [RFC8340].

Bjorklund                    Standards Track                    [Page 3]
RFC 8344                   YANG IP Management                 March 2018

2.  IP Data Model

   This document defines the YANG module "ietf-ip", which augments the
   "interface&Stewart, et al.               Informational                    [Page 46]
RFC 6458                    SCTP Sockets API               December 2011

   sre_type:  This field should be set to SCTP_REMOTE_ERROR.

   sre_flags:  This field is currently unused.

   sre_length:  This field is the total length of the notification data,
      including the notification header and the contents of sre_data.

   sre_error:  This value represents one of the Operation Error causes
      defined in the SCTP specification [RFC4960], in network byte
      order.

   sre_assoc_id:  The sre_assoc_id field holds the identifier for the
      association.  All notifications for a given association have the
      same association identifier.  For a one-to-one style socket, this
      field is ignored.

   sre_data:  This contains the ERROR chunk as defined in Section 3.3.10
      of the SCTP specification [RFC4960].

6.1.4.  SCTP_SEND_FAILED - DEPRECATED

   Please note that this notification is deprecated.  Use
   SCTP_SEND_FAILED_EVENT instead.

   If SCTP cannot deliver a message, it can return back the message as a
   notification if the SCTP_SEND_FAILED event is enabled.  The
   notification has the following format:

   struct sctp_send_failed {
     uint16_t ssf_type;
     uint16_t ssf_flags;
     uint32_t ssf_length;
     uint32_t ssf_error;
     struct sctp_sndrcvinfo ssf_info;
     sctp_assoc_t ssf_assoc_id;
     uint8_t  ssf_data[];
   };

   ssf_type:  This field should be set to SCTP_SEND_FAILED.

   ssf_flags:  The flag value will take one of the following values:

      SCTP_DATA_UNSENT:  This value indicates that the data was never
         put on the wire.

      SCTP_DATA_SENT:  This value indicates that the data was put on the
         wire.  Note that this does not necessarily mean that the data
         was (or was not) successfully delivered.

Stewart, et al.               Informational                    [Page 47]
RFC 6458                    SCTP Sockets API               December 2011

   ssf_length:  This field is the total length of the notification data,
      including the notification header and the payload in ssf_data.

   ssf_error:  This value represents the reason why the send failed, and
      if set, will be an SCTP protocol error code as defined in
      Section 3.3.10 of [RFC4960].

   ssf_info:  This field includes the ancillary data (struct
      sctp_sndrcvinfo) used to send the undelivered message.  Regardless
      of whether ancillary data is used or not, the ssf_info.sinfo_flags
      field indicates whether the complete message or only part of the
      message is returned in ssf_data.  If only part of the message is
      returned, it means that the part that is not present has been sent
      successfully to the peer.

      If the complete message cannot be sent, the SCTP_DATA_NOT_FRAG
      flag is set in ssf_info.sinfo_flags.  If the first part of the
      message is sent successfully, SCTP_DATA_LAST_FRAG is set.  This
      means that the tail end of the message is returned in ssf_data.

   ssf_assoc_id:  The ssf_assoc_id field, ssf_assoc_id, holds the
      identifier for the association.  All notifications for a given
      association have the same association identifier.  For a one-to-
      one style socket, this field is ignored.

   ssf_data:  The undelivered message or part of the undelivered message
      will be present in the ssf_data field.  Note that the
      ssf_info.sinfo_flags field as noted above should be used to
      determine whether a complete message or just a piece of the
      message is present.  Note that only user data is present in this
      field; any chunk headers or SCTP common headers must be removed by
      the SCTP stack.

6.1.5.  SCTP_SHUTDOWN_EVENT

   When a peer sends a SHUTDOWN, SCTP delivers this notification to
   inform the application that it should cease sending data.

       struct sctp_shutdown_event {
           uint16_t sse_type;
           uint16_t sse_flags;
           uint32_t sse_length;
           sctp_assoc_t sse_assoc_id;
       };

   sse_type:  This field should be set to SCTP_SHUTDOWN_EVENT.

   sse_flags:  This field is currently unused.

Stewart, et al.               Informational                    [Page 48]
RFC 6458                    SCTP Sockets API               December 2011

   sse_length:  This field is the total length of the notification data,
      including the notification header.  It will generally be
      sizeof(struct sctp_shutdown_event).

   sse_assoc_id:  The sse_assoc_id field holds the identifier for the
      association.  All notifications for a given association have the
      same association identifier.  For a one-to-one style socket, this
      field is ignored.

6.1.6.  SCTP_ADAPTATION_INDICATION

   When a peer sends an Adaptation Layer Indication parameter as
   described in [RFC5061], SCTP delivers this notification to inform the
   application about the peer's adaptation layer indication.

   struct sctp_adaptation_event {
     uint16_t sai_type;
     uint16_t sai_flags;
     uint32_t sai_length;
     uint32_t sai_adaptation_ind;
     sctp_assoc_t sai_assoc_id;
   };

   sai_type:  This field should be set to SCTP_ADAPTATION_INDICATION.

   sai_flags:  This field is currently unused.

   sai_length:  This field is the total length of the notification data,
      including the notification header.  It will generally be
      sizeof(struct sctp_adaptation_event).

   sai_adaptation_ind:  This field holds the bit array sent by the peer
      in the Adaptation Layer Indication parameter.

   sai_assoc_id:  The sai_assoc_id field holds the identifier for the
      association.  All notifications for a given association have the
      same association identifier.  For a one-to-one style socket, this
      field is ignored.

6.1.7.  SCTP_PARTIAL_DELIVERY_EVENT

   When a receiver is engaged in a partial delivery of a message, this
   notification will be used to indicate various events.

   struct sctp_pdapi_event {
     uint16_t pdapi_type;
     uint16_t pdapi_flags;
     uint32_t pdapi_length;

Stewart, et al.               Informational                    [Page 49]
RFC 6458                    SCTP Sockets API               December 2011

     uint32_t pdapi_indication;
     uint32_t pdapi_stream;
     uint32_t pdapi_seq;
     sctp_assoc_t pdapi_assoc_id;
   };

   pdapi_type:  This field should be set to SCTP_PARTIAL_DELIVERY_EVENT.

   pdapi_flags:  This field is currently unused.

   pdapi_length:  This field is the total length of the notification
      data, including the notification header.  It will generally be
      sizeof(struct sctp_pdapi_event).

   pdapi_indication:  This field holds the indication being sent to the
      application.  Currently, there is only one defined value:

      SCTP_PARTIAL_DELIVERY_ABORTED:  This indicates that the partial
         delivery of a user message has been aborted.  This happens, for
         example, if an association is aborted while a partial delivery
         is going on or the user message gets abandoned using PR-SCTP
         while the partial delivery of this message is going on.

   pdapi_stream:  This field holds the stream on which the partial
      delivery event happened.

   pdapi_seq:  This field holds the stream sequence number that was
      being partially delivered.

   pdapi_assoc_id:  The pdapi_assoc_id field holds the identifier for
      the association.  All notifications for a given association have
      the same association identifier.  For a one-to-one style socket,
      this field is ignored.

6.1.8.  SCTP_AUTHENTICATION_EVENT

   [RFC4895] defines an extension to authenticate SCTP messages.  The
   following notification is used to report different events relating to
   the use of this extension.

   struct sctp_authkey_event {
     uint16_t auth_type;
     uint16_t auth_flags;
     uint32_t auth_length;
     uint16_t auth_keynumber;
     uint32_t auth_indication;
     sctp_assoc_t auth_assoc_id;
   };

Stewart, et al.               Informational                    [Page 50]
RFC 6458                    SCTP Sockets API               December 2011

   auth_type:  This field should be set to SCTP_AUTHENTICATION_EVENT.

   auth_flags:  This field is currently unused.

   auth_length:  This field is the total length of the notification
      data, including the notification header.  It will generally be
      sizeof(struct sctp_authkey_event).

   auth_keynumber:  This field holds the key number for the affected key
      indicated in the event (depends on auth_indication).

   auth_indication:  This field holds the error or indication being
      reported.  The following values are currently defined:

      SCTP_AUTH_NEW_KEY:  This report indicates that a new key has been
         made active (used for the first time by the peer) and is now
         the active key.  The auth_keynumber field holds the user-
         specified key number.

      SCTP_AUTH_NO_AUTH:  This report indicates that the peer does not
         support SCTP authentication as defined in [RFC4895].

      SCTP_AUTH_FREE_KEY:  This report indicates that the SCTP
         implementation will no longer use the key identifier specified
         in auth_keynumber.

   auth_assoc_id:  The auth_assoc_id field holds the identifier for the
      association.  All notifications for a given association have the
      same association identifier.  For a one-to-one style socket, this
      field is ignored.

6.1.9.  SCTP_SENDER_DRY_EVENT

   When the SCTP stack has no more user data to send or retransmit, this
   notification is given to the user.  Also, at the time when a user app
   subscribes to this event, if there is no data to be sent or
   retransmit, the stack will immediately send up this notification.

   struct sctp_sender_dry_event {
     uint16_t sender_dry_type;
     uint16_t sender_dry_flags;
     uint32_t sender_dry_length;
     sctp_assoc_t sender_dry_assoc_id;
   };

   sender_dry_type:  This field should be set to SCTP_SENDER_DRY_EVENT.

   sender_dry_flags:  This field is currently unused.

Stewart, et al.               Informational                    [Page 51]
RFC 6458                    SCTP Sockets API               December 2011

   sender_dry_length:  This field is the total length of the
      notification data, including the notification header.  It will
      generally be sizeof(struct sctp_sender_dry_event).

   sender_dry_assoc_id:  The sender_dry_assoc_id field holds the
      identifier for the association.  All notifications for a given
      association have the same association identifier.  For a one-to-
      one style socket, this field is ignored.

6.1.10.  SCTP_NOTIFICATIONS_STOPPED_EVENT

   SCTP notifications, when subscribed to, are reliable.  They are
   always delivered as long as there is space in the socket receive
   buffer.  However, if an implementation experiences a notification
   storm, it may run out of socket buffer space.  When this occurs, it
   may wish to disable notifications.  If the implementation chooses to
   do this, it will append a final notification
   SCTP_NOTIFICATIONS_STOPPED_EVENT.  This notification is a union
   sctp_notification, where only the sctp_tlv structure (see the union
   above) is used.  It only contains this type in the sn_type field, the
   sn_length field set to the size of an sctp_tlv structure, and the
   sn_flags set to 0.  If an application receives this notification, it
   will need to re-subscribe to any notifications of interest to it,
   except for the sctp_data_io_event (note that SCTP_EVENTS is
   deprecated).

   An endpoint is automatically subscribed to this event as soon as it
   is subscribed to any event other than data io events.

6.1.11.  SCTP_SEND_FAILED_EVENT

   If SCTP cannot deliver a message, it can return back the message as a
   notification if the SCTP_SEND_FAILED_EVENT event is enabled.  The
   notification has the following format:

   struct sctp_send_failed_event {
     uint16_t ssfe_type;
     uint16_t ssfe_flags;
     uint32_t ssfe_length;
     uint32_t ssfe_error;
     struct sctp_sndinfo ssfe_info;
     sctp_assoc_t ssfe_assoc_id;
     uint8_t  ssfe_data[];
   };

Stewart, et al.               Informational                    [Page 52]
RFC 6458                    SCTP Sockets API               December 2011

   ssfe_type:  This field should be set to SCTP_SEND_FAILED_EVENT.

   ssfe_flags:  The flag value will take one of the following values:

      SCTP_DATA_UNSENT:  This value indicates that the data was never
         put on the wire.

      SCTP_DATA_SENT:  This value indicates that the data was put on the
         wire.  Note that this does not necessarily mean that the data
         was (or was not) successfully delivered.

   ssfe_length:  This field is the total length of the notification
      data, including the notification header and the payload in
      ssf_data.

   ssfe_error:  This value represents the reason why the send failed,
      and if set, will be an SCTP protocol error code as defined in
      Section 3.3.10 of [RFC4960].

   ssfe_info:  This field includes the ancillary data (struct
      sctp_sndinfo) used to send the undelivered message.  Regardless of
      whether ancillary data is used or not, the ssfe_info.sinfo_flags
      field indicates whether the complete message or only part of the
      message is returned in ssf_data.  If only part of the message is
      returned, it means that the part that is not present has been sent
      successfully to the peer.

      If the complete message cannot be sent, the SCTP_DATA_NOT_FRAG
      flag is set in ssfe_info.sinfo_flags.  If the first part of the
      message is sent successfully, SCTP_DATA_LAST_FRAG is set.  This
      means that the tail end of the message is returned in ssf_data.

   ssfe_assoc_id:  The ssfe_assoc_id field, ssf_assoc_id, holds the
      identifier for the association.  All notifications for a given
      association have the same association identifier.  For a one-to-
      one style socket, this field is ignored.

   ssfe_data:  The undelivered message or part of the undelivered
      message will be present in the ssf_data field.  Note that the
      ssf_info.sinfo_flags field as noted above should be used to
      determine whether a complete message or just a piece of the
      message is present.  Note that only user data is present in this
      field; any chunk headers or SCTP common headers must be removed by
      the SCTP stack.

Stewart, et al.               Informational                    [Page 53]
RFC 6458                    SCTP Sockets API               December 2011

6.2.  Notification Interest Options

6.2.1.  SCTP_EVENTS Option - DEPRECATED

   Please note that this option is deprecated.  Use the SCTP_EVENT
   option described in Section 6.2.2 instead.

   To receive SCTP event notifications, an application registers its
   interest by setting the SCTP_EVENTS socket option.  The application
   then uses recvmsg() to retrieve notifications.  A notification is
   stored in the data part (msg_iov) of the msghdr structure.  The
   socket option uses the following structure:

   struct sctp_event_subscribe {
     uint8_t sctp_data_io_event;
     uint8_t sctp_association_event;
     uint8_t sctp_address_event;
     uint8_t sctp_send_failure_event;
     uint8_t sctp_peer_error_event;
     uint8_t sctp_shutdown_event;
     uint8_t sctp_partial_delivery_event;
     uint8_t sctp_adaptation_layer_event;
     uint8_t sctp_authentication_event;
     uint8_t sctp_sender_dry_event;
   };

   sctp_data_io_event:  Setting this flag to 1 will cause the reception
      of SCTP_SNDRCV information on a per-message basis.  The
      application will need to use the recvmsg() interface so that it
      can receive the event information contained in the msg_control
      field.  Setting the flag to 0 will disable the reception of the
      message control information.  Note that this flag is not really a
      notification and is stored in the ancillary data (msg_control),
      not in the data part (msg_iov).

   sctp_association_event:  Setting this flag to 1 will enable the
      reception of association event notifications.  Setting the flag to
      0 will disable association event notifications.

   sctp_address_event:  Setting this flag to 1 will enable the reception
      of address event notifications.  Setting the flag to 0 will
      disable address event notifications.

   sctp_send_failure_event:  Setting this flag to 1 will enable the
      reception of send failure event notifications.  Setting the flag
      to 0 will disable send failure event notifications.

Stewart, et al.               Informational                    [Page 54]
RFC 6458                    SCTP Sockets API               December 2011

   sctp_peer_error_event:  Setting this flag to 1 will enable the
      reception of peer error event notifications.  Setting the flag to
      0 will disable peer error event notifications.

   sctp_shutdown_event:  Setting this flag to 1 will enable the
      reception of shutdown event notifications.  Setting the flag to 0
      will disable shutdown event notifications.

   sctp_partial_delivery_event:  Setting this flag to 1 will enable the
      reception of partial delivery event notifications.  Setting the
      flag to 0 will disable partial delivery event notifications.

   sctp_adaptation_layer_event:  Setting this flag to 1 will enable the
      reception of adaptation layer event notifications.  Setting the
      flag to 0 will disable adaptation layer event notifications.

   sctp_authentication_event:  Setting this flag to 1 will enable the
      reception of authentication layer event notifications.  Setting
      the flag to 0 will disable authentication layer event
      notifications.

   sctp_sender_dry_event:  Setting this flag to 1 will enable the
      reception of sender dry event notifications.  Setting the flag to
      0 will disable sender dry event notifications.

   An example where an application would like to receive data_io_events
   and association_events but no others would be as follows:

   {
     struct sctp_event_subscribe events;

     memset(&events, 0, sizeof(events));

     events.sctp_data_io_event = 1;
     events.sctp_association_event = 1;

     setsockopt(sd, IPPROTO_SCTP, SCTP_EVENTS, &events, sizeof(events));
   }

   Note that for one-to-many style SCTP sockets, the caller of recvmsg()
   receives ancillary data and notifications for all associations bound
   to the file descriptor.  For one-to-one style SCTP sockets, the
   caller receives ancillary data and notifications only for the single
   association bound to the file descriptor.

   By default, both the one-to-one style and the one-to-many style
   socket do not subscribe to any notification.

Stewart, et al.               Informational                    [Page 55]
RFC 6458                    SCTP Sockets API               December 2011

6.2.2.  SCTP_EVENT Option

   The SCTP_EVENTS socket option has one issue for future compatibility.
   As new features are added, the structure (sctp_event_subscribe) must
   be expanded.  This can cause an application binary interface (ABI)
   issue unless an implementation has added padding at the end of the
   structure.  To avoid this problem, SCTP_EVENTS has been deprecated
   and a new socket option SCTP_EVENT has taken its place.  The option
   is used with the following structure:

   struct sctp_event {
           sctp_assoc_t se_assoc_id;
           uint16_t     se_type;
           uint8_t      se_on;
   };

   se_assoc_id:  The se_assoc_id field is ignored for one-to-one style
      sockets.  For one-to-many style sockets, this field can be a
      particular association identifier or SCTP_{FUTURE|CURRENT|
      ALL}_ASSOC.

   se_type:  The se_type field can be filled with any value that would
      show up in the respective sn_type field (in the sctp_tlv structure
      of the notification).

   se_on:  The se_on field is set to 1 to turn on an event and set to 0
      to turn off an event.

   To use this option, the user fills in this structure and then calls
   setsockopt() to turn on or off an individual event.  The following is
   an example use of this option:

   {
     struct sctp_event event;

     memset(&event, 0, sizeof(event));

     event.se_assoc_id = SCTP_FUTURE_ASSOC;
     event.se_type = SCTP_SENDER_DRY_EVENT;
     event.se_on = 1;
     setsockopt(sd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(event));
   }

   By default, both the one-to-one style and the one-to-many style
   socket do not subscribe to any notification.

Stewart, et al.               Informational                    [Page 56]
RFC 6458                    SCTP Sockets API               December 2011

7.  Common Operations for Both Styles

7.1.  send(), recv(), sendto(), and recvfrom()

   Applications can use send() and sendto() to transmit data to the peer
   of an SCTP endpoint.  recv() and recvfrom() can be used to receive
   data from the peer.

   The function prototypes are

   ssize_t send(int sd,
                const void *msg,
                size_t len,
                int flags);

   ssize_t sendto(int sd,
                  const void *msg,
                  size_t len,
                  int flags,
                  const struct sockaddr *to,
                  socklen_t tolen);

   ssize_t recv(int sd,
                void *buf,
                size_t len,
                int flags);

   ssize_t recvfrom(int sd,
                    void *buf,
                    size_t len,
                    int flags,
                    struct sockaddr *from,
                    socklen_t *fromlen);

   and the arguments are

   sd:  The socket descriptor of an SCTP endpoint.

   msg:  The message to be sent.

   len:  The size of the message or the size of the buffer.

   to:  One of the peer addresses of the association to be used to send
      the message.

   tolen:  The size of the address.

   buf:  The buffer to store a received message.

Stewart, et al.               Informational                    [Page 57]
RFC 6458                    SCTP Sockets API               December 2011

   from:  The buffer to store the peer address used to send the received
      message.

   fromlen:  The size of the from address.

   flags:  (described below).

   These calls give access to only basic SCTP protocol features.  If
   either peer in the association uses multiple streams, or sends
   unordered data, these calls will usually be inadequate and may
   deliver the data in unpredictable ways.

   SCTP has the concept of multiple streams in one association.  The
   above calls do not allow the caller to specify on which stream a
   message should be sent.  The system uses stream 0 as the default
   stream for send() and sendto().  recv() and recvfrom() return data
   from any stream, but the caller cannot distinguish the different
   streams.  This may result in data seeming to arrive out of order.
   Similarly, if a DATA chunk is sent unordered, recv() and recvfrom()
   provide no indication.

   SCTP is message based.  The msg buffer above in send() and sendto()
   is considered to be a single message.  This means that if the caller
   wants to send a message that is composed by several buffers, the
   caller needs to combine them before calling send() or sendto().
   Alternately, the caller can use sendmsg() to do that without
   combining them.  Sending a message using send() or sendto() is atomic
   unless explicit EOR marking is enabled on the socket specified by sd.
   Using sendto() on a non-connected one-to-one style socket for
   implicit connection setup may or may not work, depending on the SCTP
   implementation.  recv() and recvfrom() cannot distinguish message
   boundaries (i.e., there is no way to observe the MSG_EOR flag to
   detect partial delivery).

   When receiving, if the buffer supplied is not large enough to hold a
   complete message, the receive call acts like a stream socket and
   returns as much data as will fit in the buffer.

   Note that the send() and recv() calls may not be used for a one-to-
   many style socket.

   Note that if an application calls a send() or sendto() function with
   no user data, the SCTP implementation should reject the request with
   an appropriate error message.  An implementation is not allowed to
   send a DATA chunk with no user data [RFC4960].

Stewart, et al.               Informational                    [Page 58]
RFC 6458                    SCTP Sockets API               December 2011

7.2.  setsockopt() and getsockopt()

   Applications use setsockopt() and getsockopt() to set or retrieve
   socket options.  Socket options are used to change the default
   behavior of socket calls.  They are described in Section 8.

   The function prototypes are

   int getsockopt(int sd,
                  int level,
                  int optname,
                  void *optval,
                  socklen_t *optlen);

   and

   int setsockopt(int sd,
                  int level,
                  int optname,
                  const void *optval,
                  socklen_t optlen);

   and the arguments are

   sd:  The socket descriptor.

   level:  Set to IPPROTO_SCTP for all SCTP options.

   optname:  The option name.

   optval:  The buffer to store the value of the option.

   optlen:  The size of the buffer (or the length of the option
      returned).

   These functions return 0 on success and -1 in case of an error.

   All socket options set on a one-to-one style listening socket also
   apply to all future accepted sockets.  For one-to-many style sockets,
   often a socket option will pass a structure that includes an assoc_id
   field.  This field can be filled with the association identifier of a
   particular association and unless otherwise specified can be filled
   with one of the following constants:

   SCTP_FUTURE_ASSOC:  Specifies that only future associations created
      after this socket option will be affected by this call.

Stewart, et al.               Informational                    [Page 59]
RFC 6458                    SCTP Sockets API               December 2011

   SCTP_CURRENT_ASSOC:  Specifies that only currently existing
      associations will be affected by this call, and future
      associations will still receive the previous default value.

   SCTP_ALL_ASSOC:  Specifies that all current and future associations
      will be affected by this call.

7.3.  read() and write()

   Applications can use read() and write() to receive and send data from
   and to a peer.  They have the same semantics as recv() and send(),
   except that the flags parameter cannot be used.

7.4.  getsockname()

   Applications use getsockname() to retrieve the locally bound socket
   address of the specified socket.  This is especially useful if the
   caller let SCTP choose a local port.  This call is for single-homed
   endpoints.  It does not work well with multi-homed endpoints.  See
   Section 9.5 for a multi-homed version of the call.

   The function prototype is

   int getsockname(int sd,
                   struct sockaddr *address,
                   socklen_t *len);

   and the arguments are

   sd:  The socket descriptor to be queried.

   address:  On return, one locally bound address (chosen by the SCTP
      stack) is stored in this buffer.  If the socket is an IPv4 socket,
      the address will be IPv4.  If the socket is an IPv6 socket, the
      address will be either an IPv6 or IPv4 address.

   len:  The caller should set the length of the address here.  On
      return, this is set to the length of the returned address.

   getsockname() returns 0 on success and -1 in case of an error.

   If the actual length of the address is greater than the length of the
   supplied sockaddr structure, the stored address will be truncated.

   If the socket has not been bound to a local name, the value stored in
   the object pointed to by address is unspecified.

Stewart, et al.               Informational                    [Page 60]
RFC 6458                    SCTP Sockets API               December 2011

7.5.  Implicit Association Setup

   The application can begin sending and receiving data using the
   sendmsg()/recvmsg() or sendto()/recvfrom() calls, without going
   through any explicit association setup procedures (i.e., no connect()
   calls required).

   Whenever sendmsg() or sendto() is called and the SCTP stack at the
   sender finds that no association exists between the sender and the
   intended receiver (identified by the address passed either in the
   msg_name field of the msghdr structure in the sendmsg() call or the
   dest_addr field in the sendto() call), the SCTP stack will
   automatically set up an association to the intended receiver.

   Upon successful association setup, an SCTP_COMM_UP notification will
   be dispatched to the socket at both the sender and receiver side.
   This notification can be read by the recvmsg() system call (see
   Section 3.1.4).

   Note that if the SCTP stack at the sender side supports bundling, the
   first user message may be bundled with the COOKIE ECHO message
   [RFC4960].

   When the SCTP stack sets up a new association implicitly, the
   SCTP_INIT type ancillary data may also be passed along (see
   Section 5.3.1 for details of the data structures) to change some
   parameters used in setting up a new association.

   If this information is not present in the sendmsg() call, or if the
   implicit association setup is triggered by a sendto() call, the
   default association initialization parameters will be used.  These
   default association parameters may be set with respective
   setsockopt() calls or be left to the system defaults.

   Implicit association setup cannot be initiated by send() calls.

8.  Socket Options

   The following subsection describes various SCTP-level socket options
   that are common to both styles.  SCTP associations can be
   multi-homed.  Therefore, certain option parameters include a
   sockaddr_storage structure to select to which peer address the option
   should be applied.

   For the one-to-many style sockets, an sctp_assoc_t (association
   identifier) parameter is used to identify the association instance
   that the operation affects.  So it must be set when using this style.

Stewart, et al.               Informational                    [Page 61]
RFC 6458                    SCTP Sockets API               December 2011

   For the one-to-one style sockets and branched-off one-to-many style
   sockets (see Section 9.2), this association ID parameter is ignored.

   Note that socket- or IP-level options are set or retrieved per
   socket.  This means that for one-to-many style sockets, the options
   will be applied to all associations (similar to using SCTP_ALL_ASSOC
   as the association identifier) belonging to the socket.  For the one-
   to-one style, these options will be applied to all peer addresses of
   the association controlled by the socket.  Applications should be
   careful in setting those options.

   For some IP stacks, getsockopt() is read-only, so a new interface
   will be needed when information must be passed both into and out of
   the SCTP stack.  The syntax for sctp_opt_info() is

   int sctp_opt_info(int sd,
                     sctp_assoc_t id,
                     int opt,
                     void *arg,
                     socklen_t *size);

   The sctp_opt_info() call is a replacement for getsockopt() only and
   will not set any options associated with the specified socket.  A
   setsockopt() call must be used to set any writable option.

   For one-to-many style sockets, id specifies the association to query.
   For one-to-one style sockets, id is ignored.  For one-to-many style
   sockets, any association identifier in the structure provided as arg
   is ignored, and id takes precedence.

   Note that SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC cannot be used with
   sctp_opt_info() or in getsockopt() calls.  Using them will result in
   an error (returning -1 and errno set to EINVAL).  SCTP_FUTURE_ASSOC
   can be used to query information for future associations.

   The field opt specifies which SCTP socket option to get.  It can get
   any socket option currently supported that requests information
   (either read/write options or read-only) such as

   SCTP_RTOINFO

   SCTP_ASSOCINFO

   SCTP_PRIMARY_ADDR

   SCTP_PEER_ADDR_PARAMS

   SCTP_DEFAULT_SEND_PARAM

Stewart, et al.               Informational                    [Page 62]
RFC 6458                    SCTP Sockets API               December 2011

   SCTP_MAX_SEG

   SCTP_AUTH_ACTIVE_KEY

   SCTP_DELAYED_SACK

   SCTP_MAX_BURST

   SCTP_CONTEXT

   SCTP_EVENT

   SCTP_DEFAULT_SNDINFO

   SCTP_DEFAULT_PRINFO

   SCTP_STATUS

   SCTP_GET_PEER_ADDR_INFO

   SCTP_PEER_AUTH_CHUNKS

   SCTP_LOCAL_AUTH_CHUNKS

   The arg field is an option-specific structure buffer provided by the
   caller.  See the rest of this section for more information on these
   options and option-specific structures.

   sctp_opt_info() returns 0 on success, or on failure returns -1 and
   sets errno to the appropriate error code.

8.1.  Read/Write Options

8.1.1.  Retransmission Timeout Parameters (SCTP_RTOINFO)

   The protocol parameters used to initialize and limit the
   retransmission timeout (RTO) are tunable.  See [RFC4960] for more
   information on how these parameters are used in RTO calculation.

   The following structure is used to access and modify these
   parameters:

   struct sctp_rtoinfo {
     sctp_assoc_t srto_assoc_id;
     uint32_t srto_initial;
     uint32_t srto_max;
     uint32_t srto_min;
   };

Stewart, et al.               Informational                    [Page 63]
RFC 6458                    SCTP Sockets API               December 2011

   srto_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, the application may fill
      in an association identifier or SCTP_FUTURE_ASSOC.  It is an error
      to use SCTP_{CURRENT|ALL}_ASSOC in srto_assoc_id.

   srto_initial:  This parameter contains the initial RTO value.

   srto_max and srto_min:  These parameters contain the maximum and
      minimum bounds for all RTOs.

   All times are given in milliseconds.  A value of 0, when modifying
   the parameters, indicates that the current value should not be
   changed.

   To access or modify these parameters, the application should call
   getsockopt() or setsockopt(), respectively, with the option name
   SCTP_RTOINFO.

8.1.2.  Association Parameters (SCTP_ASSOCINFO)

   This option is used to both examine and set various association and
   endpoint parameters.  See [RFC4960] for more information on how these
   parameters are used.

   The following structure is used to access and modify these
   parameters:

   struct sctp_assocparams {
     sctp_assoc_t sasoc_assoc_id;
     uint16_t sasoc_asocmaxrxt;
     uint16_t sasoc_number_peer_destinations;
     uint32_t sasoc_peer_rwnd;
     uint32_t sasoc_local_rwnd;
     uint32_t sasoc_cookie_life;
   };

   sasoc_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, the application may fill
      in an association identifier or SCTP_FUTURE_ASSOC.  It is an error
      to use SCTP_{CURRENT|ALL}_ASSOC in sasoc_assoc_id.

   sasoc_asocmaxrxt:  This parameter contains the maximum retransmission
      attempts to make for the association.

   sasoc_number_peer_destinations:  This parameter is the number of
      destination addresses that the peer has.

Stewart, et al.               Informational                    [Page 64]
RFC 6458                    SCTP Sockets API               December 2011

   sasoc_peer_rwnd:  This parameter holds the current value of the
      peer's rwnd (reported in the last selective acknowledgment (SACK))
      minus any outstanding data (i.e., data in flight).

   sasoc_local_rwnd:  This parameter holds the last reported rwnd that
      was sent to the peer.

   sasoc_cookie_life:  This parameter is the association's cookie life
      value used when issuing cookies.

   The value of sasoc_peer_rwnd is meaningless when examining endpoint
   information (i.e., it is only valid when examining information on a
   specific association).

   All time values are given in milliseconds.  A value of 0, when
   modifying the parameters, indicates that the current value should not
   be changed.

   The values of sasoc_asocmaxrxt and sasoc_cookie_life may be set on
   either an endpoint or association basis.  The rwnd and destination
   counts (sasoc_number_peer_destinations, sasoc_peer_rwnd,
   sasoc_local_rwnd) are not settable, and any value placed in these is
   ignored.

   To access or modify these parameters, the application should call
   getsockopt() or setsockopt(), respectively, with the option name
   SCTP_ASSOCINFO.

   The maximum number of retransmissions before an address is considered
   unreachable is also tunable, but is address-specific, so it is
   covered in a separate option.  If an application attempts to set the
   value of the association's maximum retransmission parameter to more
   than the sum of all maximum retransmission parameters, setsockopt()
   may return an error.  The reason for this, from Section 8.2 of
   [RFC4960], is as follows:

      Note: When configuring the SCTP endpoint, the user should avoid
      having the value of 'Association.Max.Retrans' (sasoc_maxrxt in
      this option) larger than the summation of the 'Path.Max.Retrans'
      (see spp_pathmaxrxt in Section 8.1.12) of all of the destination
      addresses for the remote endpoint.  Otherwise, all of the
      destination addresses may become inactive while the endpoint still
      considers the peer endpoint reachable.

Stewart, et al.               Informational                    [Page 65]
RFC 6458                    SCTP Sockets API               December 2011quot; lists defined in the "ietf-interfaces" module [RFC8343]
   with IP-specific data nodes.

   The data model has the following structure for IP data nodes per
   interface, excluding the deprecated data nodes:

   module: ietf-ip
     augment /if:interfaces/if:interface:
       +--rw ipv4!
       |  +--rw enabled?      boolean
       |  +--rw forwarding?   boolean
       |  +--rw mtu?          uint16
       |  +--rw address* [ip]
       |  |  +--rw ip               inet:ipv4-address-no-zone
       |  |  +--rw (subnet)
       |  |  |  +--:(prefix-length)
       |  |  |  |  +--rw prefix-length?   uint8
       |  |  |  +--:(netmask)
       |  |  |     +--rw netmask?         yang:dotted-quad
       |  |  |             {ipv4-non-contiguous-netmasks}?
       |  |  +--ro origin?          ip-address-origin
       |  +--rw neighbor* [ip]
       |     +--rw ip                    inet:ipv4-address-no-zone
       |     +--rw link-layer-address    yang:phys-address
       |     +--ro origin?               neighbor-origin
       +--rw ipv6!
          +--rw enabled?                     boolean
          +--rw forwarding?                  boolean
          +--rw mtu?                         uint32
          +--rw address* [ip]
          |  +--rw ip               inet:ipv6-address-no-zone
          |  +--rw prefix-length    uint8
          |  +--ro origin?          ip-address-origin
          |  +--ro status?          enumeration
          +--rw neighbor* [ip]
          |  +--rw ip                    inet:ipv6-address-no-zone
          |  +--rw link-layer-address    yang:phys-address
          |  +--ro origin?               neighbor-origin
          |  +--ro is-router?            empty
          |  +--ro state?                enumeration
          +--rw dup-addr-detect-transmits?   uint32

Bjorklund                    Standards Track                    [Page 4]
RFC 8344                   YANG IP Management                 March 2018

          +--rw autoconf
             +--rw create-global-addresses?        boolean
             +--rw create-temporary-addresses?     boolean
             |       {ipv6-privacy-autoconf}?
             +--rw temporary-valid-lifetime?       uint32
             |       {ipv6-privacy-autoconf}?
             +--rw temporary-preferred-lifetime?   uint32
                     {ipv6-privacy-autoconf}?

   The data model defines two containers per interface -- "ipv4" and
   "ipv6", representing the IPv4 and IPv6 address families.  In each
   container, there is a leaf "enabled" that controls whether or not the
   address family is enabled on that interface, and a leaf "forwarding"
   that controls whether or not IP packet forwarding for the address
   family is enabled on the interface.  In each container, there is also
   a list of addresses and a list of mappings from IP addresses to
   link-layer addresses.

3.  Relationship to the IP-MIB

   If the device implements the IP-MIB [RFC4293], each entry in the
   "ipv4/address" and "ipv6/address" lists is mapped to one
   ipAddressEntry, where the ipAddressIfIndex refers to the "address"
   entry's interface.

   The IP-MIB defines objects to control IPv6 Router Advertisement
   messages.  The corresponding YANG data nodes are defined in
   [RFC8022].

   The entries in "ipv4/neighbor" and "ipv6/neighbor" are mapped to
   ipNetToPhysicalTable.

Bjorklund                    Standards Track                    [Page 5]
RFC 8344                   YANG IP Management                 March 2018

   The following table lists the YANG data nodes with corresponding
   objects in the IP-MIB.

   +----------------------------------+--------------------------------+
   | YANG data node in                | IP-MIB object                  |
   | /if:interfaces/if:interface      |                                |
   +----------------------------------+--------------------------------+
   | ipv4                             | ipv4InterfaceEnableStatus      |
   | ipv4/enabled                     | ipv4InterfaceEnableStatus      |
   | ipv4/address                     | ipAddressEntry                 |
   | ipv4/address/ip                  | ipAddressAddrType              |
   |                                  | ipAddressAddr                  |
   | ipv4/neighbor                    | ipNetToPhysicalEntry           |
   | ipv4/neighbor/ip                 | ipNetToPhysicalNetAddressType  |
   |                                  | ipNetToPhysicalNetAddress      |
   | ipv4/neighbor/link-layer-address | ipNetToPhysicalPhysAddress     |
   | ipv4/neighbor/origin             | ipNetToPhysicalType            |
   | ipv6                             | ipv6InterfaceEnableStatus      |
   | ipv6/enabled                     | ipv6InterfaceEnableStatus      |
   | ipv6/forwarding                  | ipv6InterfaceForwarding        |
   | ipv6/address                     | ipAddressEntry                 |
   | ipv6/address/ip                  | ipAddressAddrType              |
   |                                  | ipAddressAddr                  |
   | ipv4/address/origin              | ipAddressOrigin                |
   | ipv6/address/status              | ipAddressStatus                |
   | ipv6/neighbor                    | ipNetToPhysicalEntry           |
   | ipv6/neighbor/ip                 | ipNetToPhysicalNetAddressType  |
   |                                  | ipNetToPhysicalNetAddress      |
   | ipv6/neighbor/link-layer-address | ipNetToPhysicalPhysAddress     |
   | ipv6/neighbor/origin             | ipNetToPhysicalType            |
   | ipv6/neighbor/state              | ipNetToPhysicalState           |
   +----------------------------------+--------------------------------+

           YANG Interface Data Nodes and Related IP-MIB Objects

Bjorklund                    Standards Track                    [Page 6]
RFC 8344                   YANG IP Management                 March 2018

4.  IP Management YANG Module

   This module imports typedefs from [RFC6991] and [RFC8343], and it
   references [RFC791], [RFC826], [RFC4861], [RFC4862], [RFC4941],
   [RFC7217], and [RFC8200].

   <CODE BEGINS> file "ietf-ip@2018-02-22.yang"
   module ietf-ip {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-ip";
     prefix ip;

     import ietf-interfaces {
       prefix if;
     }
     import ietf-inet-types {
       prefix inet;
     }
     import ietf-yang-types {
       prefix yang;
     }

     organization
       "IETF NETMOD (Network Modeling) Working Group";

     contact
       "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Editor:   Martin Bjorklund
                  <mailto:mbj@tail-f.com>";
     description
       "This module contains a collection of YANG definitions for
        managing IP implementations.

        Copyright (c) 2018 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC 8344; see
        the RFC itself for full legal notices.";

Bjorklund                    Standards Track                    [Page 7]
RFC 8344                   YANG IP Management                 March 2018

     revision 2018-02-22 {
       description
         "Updated to support NMDA.";
       reference
         "RFC 8344: A YANG Data Model for IP Management";
     }

     revision 2014-06-16 {
       description
         "Initial revision.";
       reference
         "RFC 7277: A YANG Data Model for IP Management";
     }

     /*
      * Features
      */

     feature ipv4-non-contiguous-netmasks {
       description
         "Indicates support for configuring non-contiguous
          subnet masks.";
     }

     feature ipv6-privacy-autoconf {
       description
         "Indicates support for privacy extensions for stateless address
          autoconfiguration in IPv6.";
       reference
         "RFC 4941: Privacy Extensions for Stateless Address
                    Autoconfiguration in IPv6";
     }

     /*
      * Typedefs
      */

     typedef ip-address-origin {
       type enumeration {
         enum other {
           description
             "None of the following.";
         }

Bjorklund                    Standards Track                    [Page 8]
RFC 8344                   YANG IP Management                 March 2018

         enum static {
           description
             "Indicates that the address has been statically
              configured -- for example, using the Network Configuration
              Protocol (NETCONF) or a command line interface.";
         }
         enum dhcp {
           description
             "Indicates an address that has been assigned to this
              system by a DHCP server.";
         }
         enum link-layer {
           description
             "Indicates an address created by IPv6 stateless
              autoconfiguration that embeds a link-layer address in its
              interface identifier.";
         }
         enum random {
           description
             "Indicates an address chosen by the system at
              random, e.g., an IPv4 address within 169.254/16, a
              temporary address as described in RFC 4941, or a
              semantically opaque address as described in RFC 7217.";
           reference
             "RFC 4941: Privacy Extensions for Stateless Address
                        Autoconfiguration in IPv6
              RFC 7217: A Method for Generating Semantically Opaque
                        Interface Identifiers with IPv6 Stateless
                        Address Autoconfiguration (SLAAC)";
         }
       }
       description
         "The origin of an address.";
     }

     typedef neighbor-origin {
       type enumeration {
         enum other {
           description
             "None of the following.";
         }
         enum static {
           description
             "Indicates that the mapping has been statically
              configured -- for example, using NETCONF or a command line
              interface.";
         }

Bjorklund                    Standards Track                    [Page 9]
RFC 8344                   YANG IP Management                 March 2018

         enum dynamic {
           description
             "Indicates that the mapping has been dynamically resolved
              using, for example, IPv4 ARP or the IPv6 Neighbor
              Discovery protocol.";
         }
       }
       description
         "The origin of a neighbor entry.";
     }

     /*
      * Data nodes
      */

     augment "/if:interfaces/if:interface" {
       description
         "IP parameters on interfaces.

          If an interface is not capable of running IP, the server
          must not allow the client to configure these parameters.";

       container ipv4 {
         presence
           "Enables IPv4 unless the 'enabled' leaf
            (which defaults to 'true') is set to 'false'";
         description
           "Parameters for the IPv4 address family.";

         leaf enabled {
           type boolean;
           default true;
           description
             "Controls whether IPv4 is enabled or disabled on this
              interface.  When IPv4 is enabled, this interface is
              connected to an IPv4 stack, and the interface can send
              and receive IPv4 packets.";
         }
         leaf forwarding {
           type boolean;
           default false;
           description
             "Controls IPv4 packet forwarding of datagrams received by,
              but not addressed to, this interface.  IPv4 routers
              forward datagrams.  IPv4 hosts do not (except those
              source-routed via the host).";
         }

Bjorklund                    Standards Track                   [Page 10]
RFC 8344                   YANG IP Management                 March 2018

         leaf mtu {
           type uint16 {
             range "68..max";
           }
           units "octets";
           description
             "The size, in octets, of the largest IPv4 packet that the
              interface will send and receive.

              The server may restrict the allowed values for this leaf,
              depending on the interface's type.

              If this leaf is not configured, the operationally used MTU
              depends on the interface's type.";
           reference
             "RFC 791: Internet Protocol";
         }
         list address {
           key "ip";
           description
             "The list of IPv4 addresses on the interface.";

           leaf ip {
             type inet:ipv4-address-no-zone;
             description
               "The IPv4 address on the interface.";
           }
           choice subnet {
             mandatory true;
             description
               "The subnet can be specified as a prefix length or,
                if the server supports non-contiguous netmasks, as
                a netmask.";
             leaf prefix-length {
               type uint8 {
                 range "0..32";
               }
               description
                 "The length of the subnet prefix.";
             }
             leaf netmask {
               if-feature ipv4-non-contiguous-netmasks;
               type yang:dotted-quad;
               description
                 "The subnet specified as a netmask.";
             }
           }

Bjorklund                    Standards Track                   [Page 11]
RFC 8344                   YANG IP Management                 March 2018

           leaf origin {
             type ip-address-origin;
             config false;
             description
               "The origin of this address.";
           }
         }
         list neighbor {
           key "ip";
           description
             "A list of mappings from IPv4 addresses to
              link-layer addresses.

              Entries in this list in the intended configuration are
              used as static entries in the ARP Cache.

              In the operational state, this list represents the ARP
              Cache.";
           reference
             "RFC 826: An Ethernet Address Resolution Protocol";

           leaf ip {
             type inet:ipv4-address-no-zone;
             description
               "The IPv4 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             mandatory true;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             config false;
             description
               "The origin of this neighbor entry.";
           }
         }
       }

Bjorklund                    Standards Track                   [Page 12]
RFC 8344                   YANG IP Management                 March 2018

       container ipv6 {
         presence
           "Enables IPv6 unless the 'enabled' leaf
            (which defaults to 'true') is set to 'false'";
         description
           "Parameters for the IPv6 address family.";

         leaf enabled {
           type boolean;
           default true;
           description
             "Controls whether IPv6 is enabled or disabled on this
              interface.  When IPv6 is enabled, this interface is
              connected to an IPv6 stack, and the interface can send
              and receive IPv6 packets.";
         }
         leaf forwarding {
           type boolean;
           default false;
           description
             "Controls IPv6 packet forwarding of datagrams received by,
              but not addressed to, this interface.  IPv6 routers
              forward datagrams.  IPv6 hosts do not (except those
              source-routed via the host).";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                        Section 6.2.1, IsRouter";
         }
         leaf mtu {
           type uint32 {
             range "1280..max";
           }
           units "octets";
           description
             "The size, in octets, of the largest IPv6 packet that the
              interface will send and receive.

              The server may restrict the allowed values for this leaf,
              depending on the interface's type.

              If this leaf is not configured, the operationally used MTU
              depends on the interface's type.";
           reference
             "RFC 8200: Internet Protocol, Version 6 (IPv6)
                        Specification
                        Section 5";
         }

Bjorklund                    Standards Track                   [Page 13]
RFC 8344                   YANG IP Management                 March 2018

         list address {
           key "ip";
           description
             "The list of IPv6 addresses on the interface.";

           leaf ip {
             type inet:ipv6-address-no-zone;
             description
               "The IPv6 address on the interface.";
           }
           leaf prefix-length {
             type uint8 {
               range "0..128";
             }
             mandatory true;
             description
               "The length of the subnet prefix.";
           }
           leaf origin {
             type ip-address-origin;
             config false;
             description
               "The origin of this address.";
           }
           leaf status {
             type enumeration {
               enum preferred {
                 description
                   "This is a valid address that can appear as the
                    destination or source address of a packet.";
               }
               enum deprecated {
                 description
                   "This is a valid but deprecated address that should
                    no longer be used as a source address in new
                    communications, but packets addressed to such an
                    address are processed as expected.";
               }
               enum invalid {
                 description
                   "This isn't a valid address, and it shouldn't appear
                    as the destination or source address of a packet.";
               }

Bjorklund                    Standards Track                   [Page 14]
RFC 8344                   YANG IP Management                 March 2018

               enum inaccessible {
                 description
                   "The address is not accessible because the interface
                    to which this address is assigned is not
                    operational.";
               }
               enum unknown {
                 description
                   "The status cannot be determined for some reason.";
               }
               enum tentative {
                 description
                   "The uniqueness of the address on the link is being
                    verified.  Addresses in this state should not be
                    used for general communication and should only be
                    used to determine the uniqueness of the address.";
               }
               enum duplicate {
                 description
                   "The address has been determined to be non-unique on
                    the link and so must not be used.";
               }
               enum optimistic {
                 description
                   "The address is available for use, subject to
                    restrictions, while its uniqueness on a link is
                    being verified.";
               }
             }
             config false;
             description
               "The status of an address.  Most of the states correspond
                to states from the IPv6 Stateless Address
                Autoconfiguration protocol.";
             reference
               "RFC 4293: Management Information Base for the
                          Internet Protocol (IP)
                          - IpAddressStatusTC
                RFC 4862: IPv6 Stateless Address Autoconfiguration";
           }
         }

Bjorklund                    Standards Track                   [Page 15]
RFC 8344                   YANG IP Management                 March 2018

         list neighbor {
           key "ip";
           description
             &

8.1.3.  Initialization Parameters (SCTP_INITMSG)

   Applications can specify protocol parameters for the default
   association initialization.  The structure used to access and modify
   these parameters is defined in Section 5.3.1.  The option name
   argument to setsockopt() and getsockopt() is SCTP_INITMSG.

   Setting initialization parameters is effective only on an unconnected
   socket (for one-to-many style sockets, only future associations are
   affected by the change).

8.1.4.  SO_LINGER

   An application can use this option to perform the SCTP ABORT
   primitive.  This option affects all associations related to the
   socket.

   The linger option structure is

   struct linger {
     int l_onoff;  /* option on/off */
     int l_linger; /* linger time   */
   };

   To enable the option, set l_onoff to 1.  If the l_linger value is set
   to 0, calling close() is the same as the ABORT primitive.  If the
   value is set to a negative value, the setsockopt() call will return
   an error.  If the value is set to a positive value linger_time, the
   close() can be blocked for at most linger_time.  Please note that the
   time unit is in seconds, according to POSIX, but might be different
   on specific platforms.  If the graceful shutdown phase does not
   finish during this period, close() will return, but the graceful
   shutdown phase will continue in the system.

   Note that this is a socket-level option, not an SCTP-level option.
   When using this option, an application must specify a level of
   SOL_SOCKET in the call.

8.1.5.  SCTP_NODELAY

   This option turns on/off any Nagle-like algorithm.  This means that
   packets are generally sent as soon as possible, and no unnecessary
   delays are introduced, at the cost of more packets in the network.
   In particular, not using any Nagle-like algorithm might reduce the
   bundling of small user messages in cases where this would require an
   additional delay.

   Turning this option on disables any Nagle-like algorithm.

Stewart, et al.               Informational                    [Page 66]
RFC 6458                    SCTP Sockets API               December 2011

   This option expects an integer boolean flag, where a non-zero value
   turns on the option, and a zero value turns off the option.

8.1.6.  SO_RCVBUF

   This option sets the receive buffer size in octets.  For SCTP one-to-
   one style sockets, this option controls the receiver window size.
   For one-to-many style sockets, the meaning is implementation
   dependent.  It might control the receive buffer for each association
   bound to the socket descriptor, or it might control the receive
   buffer for the whole socket.  This option expects an integer.

   Note that this is a socket-level option, not an SCTP-level option.
   When using this option, an application must specify a level of
   SOL_SOCKET in the call.

8.1.7.  SO_SNDBUF

   This option sets the send buffer size.  For SCTP one-to-one style
   sockets, this option controls the amount of data SCTP may have
   waiting in internal buffers to be sent.  This option therefore bounds
   the maximum size of data that can be sent in a single send call.  For
   one-to-many style sockets, the effect is the same, except that it
   applies to one or all associations (see Section 3.3) bound to the
   socket descriptor used in the setsockopt() or getsockopt() call.  The
   option applies to each association's window size separately.  This
   option expects an integer.

   Note that this is a socket-level option, not an SCTP-level option.
   When using this option, an application must specify a level of
   SOL_SOCKET in the call.

8.1.8.  Automatic Close of Associations (SCTP_AUTOCLOSE)

   This socket option is applicable to the one-to-many style socket
   only.  When set, it will cause associations that are idle for more
   than the specified number of seconds to automatically close using the
   graceful shutdown procedure.  An idle association is defined as an
   association that has not sent or received user data.  The special
   value of '0' indicates that no automatic close of any association
   should be performed; this is the default value.  This option expects
   an integer defining the number of seconds of idle time before an
   association is closed.

Stewart, et al.               Informational                    [Page 67]
RFC 6458                    SCTP Sockets API               December 2011

   An application using this option should enable the ability to receive
   the association change notification.  This is the only mechanism by
   which an application is informed about the closing of an association.
   After an association is closed, the association identifier assigned
   to it can be reused.  An application should be aware of this to avoid
   the possible problem of sending data to an incorrect peer endpoint.

8.1.9.  Set Primary Address (SCTP_PRIMARY_ADDR)

   This option requests that the local SCTP stack uses the enclosed peer
   address as the association's primary.  The enclosed address must be
   one of the association peer's addresses.

   The following structure is used to make a set peer primary request:

   struct sctp_setprim {
     sctp_assoc_t ssp_assoc_id;
     struct sockaddr_storage ssp_addr;
   };

   ssp_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, it identifies the
      association for this request.  Note that the special sctp_assoc_t
      SCTP_{FUTURE|ALL|CURRENT}_ASSOC are not allowed.

   ssp_addr:  This parameter is the address to set as primary.  No
      wildcard address is allowed.

8.1.10.  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)

   This option requests that the local endpoint set the specified
   Adaptation Layer Indication parameter for all future INIT and
   INIT-ACK exchanges.

   The following structure is used to access and modify this parameter:

   struct sctp_setadaptation {
     uint32_t   ssb_adaptation_ind;
   };

   ssb_adaptation_ind:  The adaptation layer indicator that will be
      included in any outgoing Adaptation Layer Indication parameter.

8.1.11.  Enable/Disable Message Fragmentation (SCTP_DISABLE_FRAGMENTS)

   This option is an on/off flag and is passed as an integer, where a
   non-zero is on and a zero is off.  If enabled, no SCTP message
   fragmentation will be performed.  The effect of enabling this option

Stewart, et al.               Informational                    [Page 68]
RFC 6458                    SCTP Sockets API               December 2011

   is that if a message being sent exceeds the current Path MTU (PMTU)
   size, the message will not be sent and instead an error will be
   indicated to the user.  If this option is disabled (the default),
   then a message exceeding the size of the PMTU will be fragmented and
   reassembled by the peer.

8.1.12.  Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)

   Applications can enable or disable heartbeats for any peer address of
   an association, modify an address's heartbeat interval, force a
   heartbeat to be sent immediately, and adjust the address's maximum
   number of retransmissions sent before an address is considered
   unreachable.

   The following structure is used to access and modify an address's
   parameters:

   struct sctp_paddrparams {
     sctp_assoc_t spp_assoc_id;
     struct sockaddr_storage spp_address;
     uint32_t spp_hbinterval;
     uint16_t spp_pathmaxrxt;
     uint32_t spp_pathmtu;
     uint32_t spp_flags;
     uint32_t spp_ipv6_flowlabel;
     uint8_t  spp_dscp;
   };

   spp_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, the application may fill
      in an association identifier or SCTP_FUTURE_ASSOC for this query.
      It is an error to use SCTP_{CURRENT|ALL}_ASSOC in spp_assoc_id.

   spp_address:  This specifies which address is of interest.  If a
      wildcard address is provided, it applies to all current and future
      paths.

   spp_hbinterval:  This contains the value of the heartbeat interval,
      in milliseconds (HB.Interval in [RFC4960]).  Note that unless the
      spp_flags field is set to SPP_HB_ENABLE, the value of this field
      is ignored.  Note also that a value of zero indicates that the
      current setting should be left unchanged.  To set an actual value
      of zero, the SPP_HB_TIME_IS_ZERO flag should be used.  Even when
      it is set to 0, it does not mean that SCTP will continuously send
      out heartbeats, since the actual interval also includes the
      current RTO and jitter (see Section 8.3 of [RFC4960]).

Stewart, et al.               Informational                    [Page 69]
RFC 6458                    SCTP Sockets API               December 2011

   spp_pathmaxrxt:  This contains the maximum number of retransmissions
      before this address shall be considered unreachable.  Note that a
      value of zero indicates that the current setting should be left
      unchanged.

   spp_pathmtu:  This field contains the current Path MTU of the peer
      address.  It is the number of bytes available in an SCTP packet
      for chunks.  Providing a value of 0 does not change the current
      setting.  If a positive value is provided and SPP_PMTUD_DISABLE is
      set in the spp_flags field, the given value is used as the Path
      MTU.  If SPP_PMTUD_ENABLE is set in the spp_flags field, the
      spp_pathmtu field is ignored.

   spp_flags:  These flags are used to control various features on an
      association.  The flag field is a bitmask that may contain zero or
      more of the following options:

      SPP_HB_ENABLE:  This field enables heartbeats on the specified
         address.

      SPP_HB_DISABLE:  This field disables heartbeats on the specified
         address.  Note that SPP_HB_ENABLE and SPP_HB_DISABLE are
         mutually exclusive; only one of these two should be specified.
         Enabling both fields will yield undetermined results.

      SPP_HB_DEMAND:  This field requests that a user-initiated
         heartbeat be made immediately.  This must not be used in
         conjunction with a wildcard address.

      SPP_HB_TIME_IS_ZERO:  This field specifies that the time for
         heartbeat delay is to be set to 0 milliseconds.

      SPP_PMTUD_ENABLE:  This field will enable PMTU discovery on the
         specified address.

      SPP_PMTUD_DISABLE:  This field will disable PMTU discovery on the
         specified address.  Note that if the address field is empty,
         then all addresses on the association are affected.  Note also
         that SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
         exclusive.  Enabling both fields will yield undetermined
         results.

      SPP_IPV6_FLOWLABEL:  Setting this flag enables the setting of the
         IPV6 flow label value.  The value is contained in the
         spp_ipv6_flowlabel field.

Stewart, et al.               Informational                    [Page 70]
RFC 6458                    SCTP Sockets API               December 2011

         Upon retrieval, this flag will be set to indicate that the
         spp_ipv6_flowlabel field has a valid value returned.  If a
         specific destination address is set (in the spp_address field),
         then the value returned is that of the address.  If just an
         association is specified (and no address), then the
         association's default flow label is returned.  If neither an
         association nor a destination is specified, then the socket's
         default flow label is returned.  For non-IPv6 sockets, this
         flag will be left cleared.

      SPP_DSCP:  Setting this flag enables the setting of the
         Differentiated Services Code Point (DSCP) value associated with
         either the association or a specific address.  The value is
         obtained in the spp_dscp field.

         Upon retrieval, this flag will be set to indicate that the
         spp_dscp field has a valid value returned.  If a specific
         destination address is set when called (in the spp_address
         field), then that specific destination address's DSCP value is
         returned.  If just an association is specified, then the
         association's default DSCP is returned.  If neither an
         association nor a destination is specified, then the socket's
         default DSCP is returned.

   spp_ipv6_flowlabel:  This field is used in conjunction with the
      SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.  The 20
      least significant bits are used for the flow label.  This setting
      has precedence over any IPv6-layer setting.

   spp_dscp:  This field is used in conjunction with the SPP_DSCP flag
      and contains the DSCP.  The 6 most significant bits are used for
      the DSCP.  This setting has precedence over any IPv4- or IPv6-
      layer setting.

   Please note that changing the flow label or DSCP value will affect
   all packets sent by the SCTP stack after setting these parameters.
   The flow label might also be set via the sin6_flowinfo field of the
   sockaddr_in6 structure.

8.1.13.  Set Default Send Parameters (SCTP_DEFAULT_SEND_PARAM) -
         DEPRECATED

   Please note that this option is deprecated.  SCTP_DEFAULT_SNDINFO
   (Section 8.1.31) should be used instead.

   Applications that wish to use the sendto() system call may wish to
   specify a default set of parameters that would normally be supplied
   through the inclusion of ancillary data.  This socket option allows

Stewart, et al.               Informational                    [Page 71]
RFC 6458                    SCTP Sockets API               December 2011

   such an application to set the default sctp_sndrcvinfo structure.
   The application that wishes to use this socket option simply passes
   the sctp_sndrcvinfo structure (defined in Section 5.3.2) to this
   call.  The input parameters accepted by this call include
   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, and
   sinfo_timetolive.  The sinfo_flags field is composed of a bitwise OR
   of SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL.  The sinfo_assoc_id
   field specifies the association to which to apply the parameters.
   For a one-to-many style socket, any of the predefined constants are
   also allowed in this field.  The field is ignored for one-to-one
   style sockets.

8.1.14.  Set Notification and Ancillary Events (SCTP_EVENTS) -
         DEPRECATED

   This socket option is used to specify various notifications and
   ancillary data the user wishes to receive.  Please see Section 6.2.1
   for a full description of this option and its usage.  Note that this
   option is considered deprecated and is present for backward
   compatibility.  New applications should use the SCTP_EVENT option.
   See Section 6.2.2 for a full description of that option as well.

8.1.15.  Set/Clear IPv4 Mapped Addresses (SCTP_I_WANT_MAPPED_V4_ADDR)

   This socket option is a boolean flag that turns on or off the mapping
   of IPv4 addresses.  If this option is turned on, then IPv4 addresses
   will be mapped to IPv6 representation.  If this option is turned off,
   then no mapping will be done of IPv4 addresses, and a user will
   receive both PF_INET6 and PF_INET type addresses on the socket.  See
   [RFC3542] for more details on mapped IPv6 addresses.

   If this socket option is used on a socket of type PF_INET, an error
   is returned.

   By default, this option is turned off and expects an integer to be
   passed where a non-zero value turns on the option and a zero value
   turns off the option.

8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)

   This option will get or set the maximum size to put in any outgoing
   SCTP DATA chunk.  If a message is larger than this maximum size, it
   will be fragmented by SCTP into the specified size.  Note that the
   underlying SCTP implementation may fragment into smaller sized chunks
   when the PMTU of the underlying association is smaller than the value
   set by the user.  The default value for this option is '0', which
   indicates that the user is not limiting fragmentation and only the
   PMTU will affect SCTP's choice of DATA chunk size.  Note also that

Stewart, et al.               Informational                    [Page 72]
RFC 6458                    SCTP Sockets API               December 2011

   values set larger than the maximum size of an IP datagram will
   effectively let SCTP control fragmentation (i.e., the same as setting
   this option to 0).

   The following structure is used to access and modify this parameter:

   struct sctp_assoc_value {
     sctp_assoc_t assoc_id;
     uint32_t assoc_value;
   };

   assoc_id:  This parameter is ignored for one-to-one style sockets.
      For one-to-many style sockets, this parameter indicates upon which
      association the user is performing an action.  It is an error to
      use SCTP_{CURRENT|ALL}_ASSOC in assoc_id.

   assoc_value:  This parameter specifies the maximum size in bytes.

8.1.17.  Get or Set the List of Supported HMAC Identifiers
         (SCTP_HMAC_IDENT)

   This option gets or sets the list of Hashed Message Authentication
   Code (HMAC) algorithms that the local endpoint requires the peer
   to use.

   The following structure is used to get or set these identifiers:

   struct sctp_hmacalgo {
     uint32_t shmac_number_of_idents;
     uint16_t shmac_idents[];
   };

   shmac_number_of_idents:  This field gives the number of elements
      present in the array shmac_idents.

   shmac_idents:  This parameter contains an array of HMAC identifiers
      that the local endpoint is requesting the peer to use, in priority
      order.  The following identifiers are valid:

      *  SCTP_AUTH_HMAC_ID_SHA1

      *  SCTP_AUTH_HMAC_ID_SHA256

   Note that the list supplied must include SCTP_AUTH_HMAC_ID_SHA1 and
   may include any of the other values in its preferred order (lowest
   list position has the highest preference in algorithm selection).

quot;A list of mappings from IPv6 addresses to
              link-layer addresses.

              Entries in this list in the intended configuration are
              used as static entries in the Neighbor Cache.

              In the operational state, this list represents the
              Neighbor Cache.";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";

           leaf ip {
             type inet:ipv6-address-no-zone;
             description
               "The IPv6 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             mandatory true;
             description
               "The link-layer address of the neighbor node.

                In the operational state, if the neighbor's 'state' leaf
                is 'incomplete', this leaf is not instantiated.";
           }
           leaf origin {
             type neighbor-origin;
             config false;
             description
               "The origin of this neighbor entry.";
           }
           leaf is-router {
             type empty;
             config false;
             description
               "Indicates that the neighbor node acts as a router.";
           }

Bjorklund                    Standards Track                   [Page 16]
RFC 8344                   YANG IP Management                 March 2018

           leaf state {
             type enumeration {
               enum incomplete {
                 description
                   "Address resolution is in progress, and the
                    link-layer address of the neighbor has not yet been
                    determined.";
               }
               enum reachable {
                 description
                   "Roughly speaking, the neighbor is known to have been
                    reachable recently (within tens of seconds ago).";
               }
               enum stale {
                 description
                   "The neighbor is no longer known to be reachable, but
                    until traffic is sent to the neighbor no attempt
                    should be made to verify its reachability.";
               }
               enum delay {
                 description
                   "The neighbor is no longer known to be reachable, and
                    traffic has recently been sent to the neighbor.
                    Rather than probe the neighbor immediately, however,
                    delay sending probes for a short while in order to
                    give upper-layer protocols a chance to provide
                    reachability confirmation.";
               }
               enum probe {
                 description
                   "The neighbor is no longer known to be reachable, and
                    unicast Neighbor Solicitation probes are being sent
                    to verify reachability.";
               }
             }
             config false;
             description
               "The Neighbor Unreachability Detection state of this
                entry.";
             reference
               "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                          Section 7.3.2";
           }
         }

Bjorklund                    Standards Track                   [Page 17]
RFC 8344                   YANG IP Management                 March 2018

         leaf dup-addr-detect-transmits {
           type uint32;
           default 1;
           description
             "The number of consecutive Neighbor Solicitation messages
              sent while performing Duplicate Address Detection on a
              tentative address.  A value of zero indicates that
              Duplicate Address Detection is not performed on
              tentative addresses.  A value of one indicates a single
              transmission with no follow-up retransmissions.";
           reference
             "RFC 4862: IPv6 Stateless Address Autoconfiguration";
         }
         container autoconf {
           description
             "Parameters to control the autoconfiguration of IPv6
              addresses, as described in RFC 4862.";
           reference
             "RFC 4862: IPv6 Stateless Address Autoconfiguration";

           leaf create-global-addresses {
             type boolean;
             default true;
             description
               "If enabled, the host creates global addresses as
                described in RFC 4862.";
             reference
               "RFC 4862: IPv6 Stateless Address Autoconfiguration
                          Section 5.5";
           }
           leaf create-temporary-addresses {
             if-feature ipv6-privacy-autoconf;
             type boolean;
             default false;
             description
               "If enabled, the host creates temporary addresses as
                described in RFC 4941.";
             reference
               "RFC 4941: Privacy Extensions for Stateless Address
                          Autoconfiguration in IPv6";
           }

Bjorklund                    Standards Track                   [Page 18]
RFC 8344                   YANG IP Management                 March 2018

           leaf temporary-valid-lifetime {
             if-feature ipv6-privacy-autoconf;
             type uint32;
             units "seconds";
             default 604800;
             description
               "The time period during which the temporary address
                is valid.";
             reference
               "RFC 4941: Privacy Extensions for Stateless Address
                          Autoconfiguration in IPv6
                          - TEMP_VALID_LIFETIME";
           }
           leaf temporary-preferred-lifetime {
             if-feature ipv6-privacy-autoconf;
             type uint32;
             units "seconds";
             default 86400;
             description
               "The time period during which the temporary address is
                preferred.";
             reference
               "RFC 4941: Privacy Extensions for Stateless Address
                          Autoconfiguration in IPv6
                          - TEMP_PREFERRED_LIFETIME";
           }
         }
       }
     }

Bjorklund                    Standards Track                   [Page 19]
RFC 8344                   YANG IP Management                 March 2018

     /*
      * Legacy operational state data nodes
      */

     augment "/if:interfaces-state/if:interface" {
       status deprecated;
       description
         "Data nodes for the operational state of IP on interfaces.";

       container ipv4 {
         presence
           "Present if IPv4 is enabled on this interface";
         config false;
         status deprecated;
         description
           "Interface-specific parameters for the IPv4 address family.";

         leaf forwarding {
           type boolean;
           status deprecated;
           description
             "Indicates whether IPv4 packet forwarding is enabled or
              disabled on this interface.";
         }
         leaf mtu {
           type uint16 {
             range "68..max";
           }
           units "octets";
           status deprecated;
           description
             &Stewart, et al.               Informational                    [Page 73]
RFC 6458                    SCTP Sockets API               December 2011

   Note also that the lack of SCTP_AUTH_HMAC_ID_SHA1, or the inclusion
   of an unknown HMAC identifier (including optional identifiers unknown
   to the implementation), will cause the set option to fail and return
   an error.

8.1.18.  Get or Set the Active Shared Key (SCTP_AUTH_ACTIVE_KEY)

   This option will get or set the active shared key to be used to build
   the association shared key.

   The following structure is used to access and modify these
   parameters:

   struct sctp_authkeyid {
     sctp_assoc_t scact_assoc_id;
     uint16_t scact_keynumber;
   };

   scact_assoc_id:  This parameter sets the active key of the specified
      association.  The special SCTP_{FUTURE|CURRENT|ALL}_ASSOC can be
      used.  For one-to-one style sockets, this parameter is ignored.
      Note, however, that this option will set the active key on the
      association if the socket is connected; otherwise, this option
      will set the default active key for the endpoint.

   scact_keynumber:  This parameter is the shared key identifier that
      the application is requesting to become the active shared key to
      be used for sending authenticated chunks.  The key identifier must
      correspond to an existing shared key.  Note that shared key
      identifier '0' defaults to a null key.

   When used with setsockopt(), the SCTP implementation must use the
   indicated shared key identifier for all messages being given to an
   SCTP implementation via a send call after the setsockopt() call,
   until changed again.  Therefore, the SCTP implementation must not
   bundle user messages that should be authenticated using different
   shared key identifiers.

   Initially, the key with key identifier 0 is the active key.

8.1.19.  Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK)

   This option will affect the way delayed SACKs are performed.  This
   option allows the application to get or set the delayed SACK time, in
   milliseconds.  It also allows changing the delayed SACK frequency.
   Changing the frequency to 1 disables the delayed SACK algorithm.
   Note that if sack_delay or sack_freq is 0 when setting this option,
   the current values will remain unchanged.

Stewart, et al.               Informational                    [Page 74]
RFC 6458                    SCTP Sockets API               December 2011

   The following structure is used to access and modify these
   parameters:

   struct sctp_sack_info {
     sctp_assoc_t sack_assoc_id;
     uint32_t sack_delay;
     uint32_t sack_freq;
   };

   sack_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, this parameter indicates
      upon which association the user is performing an action.  The
      special SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

   sack_delay:  This parameter contains the number of milliseconds the
      user is requesting that the delayed SACK timer be set to.  Note
      that this value is defined in [RFC4960] to be between 200 and 500
      milliseconds.

   sack_freq:  This parameter contains the number of packets that must
      be received before a SACK is sent without waiting for the delay
      timer to expire.  The default value is 2; setting this value to 1
      will disable the delayed SACK algorithm.

8.1.20.  Get or Set Fragmented Interleave (SCTP_FRAGMENT_INTERLEAVE)

   Fragmented interleave controls how the presentation of messages
   occurs for the message receiver.  There are three levels of fragment
   interleave defined.  Two of the levels affect one-to-one style
   sockets, while one-to-many style sockets are affected by all three
   levels.

   This option takes an integer value.  It can be set to a value of 0,
   1, or 2.  Attempting to set this level to other values will return an
   error.

   Setting the three levels provides the following receiver
   interactions:

   level 0:  Prevents the interleaving of any messages.  This means that
      when a partial delivery begins, no other messages will be received
      except the message being partially delivered.  If another message
      arrives on a different stream (or association) that could be
      delivered, it will be blocked waiting for the user to read all of
      the partially delivered message.

Stewart, et al.               Informational                    [Page 75]
RFC 6458                    SCTP Sockets API               December 2011

   level 1:  Allows interleaving of messages that are from different
      associations.  For one-to-one style sockets, level 0 and level 1
      thus have the same meaning, since a one-to-one style socket always
      receives messages from the same association.  Note that setting a
      one-to-many style socket to this level may cause multiple partial
      deliveries from different associations, but for any given
      association, only one message will be delivered until all parts of
      a message have been delivered.  This means that one large message,
      being read with an association identifier of "X", will block other
      messages from association "X" from being delivered.

   level 2:  Allows complete interleaving of messages.  This level
      requires that the sender not only carefully observe the peer
      association identifier (or address) but also pay careful attention
      to the stream number.  With this option enabled, a partially
      delivered message may begin being delivered for association "X"
      stream "Y", and the next subsequent receive may return a message
      from association "X" stream "Z".  Note that no other messages
      would be delivered for association "X" stream "Y" until all of
      stream "Y"'s partially delivered message was read.  Note that this
      option also affects one-to-one style sockets.  Also note that for
      one-to-many style sockets, not only another stream's message from
      the same association may be delivered upon the next receive, but
      some other association's message may also be delivered upon the
      next receive.

   An implementation should default one-to-many style sockets to level
   1, because otherwise, it is possible that a peer could begin sending
   a partial message and thus block all other peers from sending data.
   However, a setting of level 2 requires that the application not only
   be aware of the association (via the association identifier or peer's
   address) but also the stream number.  The stream number is not
   present unless the user has subscribed to the sctp_data_io_event (see
   Section 6.2), which is deprecated, or has enabled the
   SCTP_RECVRCVINFO socket option (see Section 8.1.29).  This is also
   why we recommend that one-to-one style sockets be defaulted to level
   0 (level 1 for one-to-one style sockets has no effect).  Note that an
   implementation should return an error if an application attempts to
   set the level to 2 and has not subscribed to the sctp_data_io_event
   event, which is deprecated, or has enabled the SCTP_RECVRCVINFO
   socket option.

   For applications that have subscribed to events, those events appear
   in the normal socket buffer data stream.  This means that unless the
   user has set the fragmentation interleave level to 0, notifications
   may also be interleaved with partially delivered messages.

Stewart, et al.               Informational                    [Page 76]
RFC 6458                    SCTP Sockets API               December 2011

8.1.21.  Set or Get the SCTP Partial Delivery Point
         (SCTP_PARTIAL_DELIVERY_POINT)

   This option will set or get the SCTP partial delivery point.  This
   point is the size of a message where the partial delivery API will be
   invoked to help free up rwnd space for the peer.  Setting this to a
   lower value will cause partial deliveries to happen more often.  This
   option expects an integer that sets or gets the partial delivery
   point in bytes.  Note also that the call will fail if the user
   attempts to set this value larger than the socket receive buffer
   size.

   Note that any single message having a length smaller than or equal to
   the SCTP partial delivery point will be delivered in a single read
   call as long as the user-provided buffer is large enough to hold the
   message.

8.1.22.  Set or Get the Use of Extended Receive Info
         (SCTP_USE_EXT_RCVINFO) - DEPRECATED

   This option will enable or disable the use of the extended version of
   the sctp_sndrcvinfo structure.  If this option is disabled, then the
   normal sctp_sndrcvinfo structure is returned in all receive message
   calls.  If this option is enabled, then the sctp_extrcvinfo structure
   is returned in all receive message calls.  The default is off.

   Note that the sctp_extrcvinfo structure is never used in any send
   call.

   This option is present for compatibility with older applications and
   is deprecated.  Future applications should use SCTP_NXTINFO to
   retrieve this same information via ancillary data.

8.1.23.  Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF)

   This option will enable or disable the use of the automatic
   generation of ASCONF chunks to add and delete addresses to an
   existing association.  Note that this option has two caveats, namely
   a) it only affects sockets that are bound to all addresses available
   to the SCTP stack, and b) the system administrator may have an
   overriding control that turns the ASCONF feature off no matter what
   setting the socket option may have.

   This option expects an integer boolean flag, where a non-zero value
   turns on the option, and a zero value turns off the option.

Stewart, et al.               Informational                    [Page 77]
RFC 6458                    SCTP Sockets API               December 2011

8.1.24.  Set or Get the Maximum Burst (SCTP_MAX_BURST)

   This option will allow a user to change the maximum burst of packets
   that can be emitted by this association.  Note that the default value
   is 4, and some implementations may restrict this setting so that it
   can only be lowered to positive values.

   To set or get this option, the user fills in the following structure:

   struct sctp_assoc_value {
     sctp_assoc_t assoc_id;
     uint32_t assoc_value;
   };

   assoc_id:  This parameter is ignored for one-to-one style sockets.
      For one-to-many style sockets, this parameter indicates upon which
      association the user is performing an action.  The special
      SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

   assoc_value:  This parameter contains the maximum burst.  Setting the
      value to 0 disables burst mitigation.

8.1.25.  Set or Get the Default Context (SCTP_CONTEXT)

   The context field in the sctp_sndrcvinfo structure is normally only
   used when a failed message is retrieved holding the value that was
   sent down on the actual send call.  This option allows the setting,
   on an association basis, of a default context that will be received
   on reading messages from the peer.  This is especially helpful for an
   application when using one-to-many style sockets to keep some
   reference to an internal state machine that is processing messages on
   the association.  Note that the setting of this value only affects
   received messages from the peer and does not affect the value that is
   saved with outbound messages.

   To set or get this option, the user fills in the following structure:

   struct sctp_assoc_value {
     sctp_assoc_t assoc_id;
     uint32_t assoc_value;
   };

   assoc_id:  This parameter is ignored for one-to-one style sockets.
      For one-to-many style sockets, this parameter indicates upon which
      association the user is performing an action.  The special
      SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

   assoc_value:  This parameter contains the context.

Stewart, et al.               Informational                    [Page 78]
quot;The size, in octets, of the largest IPv4 packet that the
              interface will send and receive.";
           reference
             "RFC 791: Internet Protocol";
         }
         list address {
           key "ip";
           status deprecated;
           description
             "The list of IPv4 addresses on the interface.";

           leaf ip {
             type inet:ipv4-address-no-zone;
             status deprecated;
             description
               "The IPv4 address on the interface.";
           }

Bjorklund                    Standards Track                   [Page 20]
RFC 8344                   YANG IP Management                 March 2018

           choice subnet {
             status deprecated;
             description
               "The subnet can be specified as a prefix length or,
                if the server supports non-contiguous netmasks, as
                a netmask.";
             leaf prefix-length {
               type uint8 {
                 range "0..32";
               }
               status deprecated;
               description
                 "The length of the subnet prefix.";
             }
             leaf netmask {
               if-feature ipv4-non-contiguous-netmasks;
               type yang:dotted-quad;
               status deprecated;
               description
                 "The subnet specified as a netmask.";
             }
           }
           leaf origin {
             type ip-address-origin;
             status deprecated;
             description
               "The origin of this address.";
           }
         }
         list neighbor {
           key "ip";
           status deprecated;
           description
             "A list of mappings from IPv4 addresses to
              link-layer addresses.

              This list represents the ARP Cache.";
           reference
             "RFC 826: An Ethernet Address Resolution Protocol";

           leaf ip {
             type inet:ipv4-address-no-zone;
             status deprecated;
             description
               "The IPv4 address of the neighbor node.";
           }

Bjorklund                    Standards Track                   [Page 21]
RFC 8344                   YANG IP Management                 March 2018

           leaf link-layer-address {
             type yang:phys-address;
             status deprecated;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             status deprecated;
             description
               "The origin of this neighbor entry.";
           }
         }
       }

       container ipv6 {
         presence
           "Present if IPv6 is enabled on this interface";
         config false;
         status deprecated;
         description
           "Parameters for the IPv6 address family.";

         leaf forwarding {
           type boolean;
           default false;
           status deprecated;
           description
             "Indicates whether IPv6 packet forwarding is enabled or
              disabled on this interface.";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                        Section 6.2.1, IsRouter";
         }
         leaf mtu {
           type uint32 {
             range "1280..max";
           }
           units "octets";
           status deprecated;
           description
             "The size, in octets, of the largest IPv6 packet that the
              interface will send and receive.";
           reference
             "RFC 8200: Internet Protocol, Version 6 (IPv6)
                        Specification
                        Section 5";
         }

Bjorklund                    Standards Track                   [Page 22]
RFC 8344                   YANG IP Management                 March 2018

         list address {
           key "ip";
           status deprecated;
           description
             "The list of IPv6 addresses on the interface.";

           leaf ip {
             type inet:ipv6-address-no-zone;
             status deprecated;
             description
               "The IPv6 address on the interface.";
           }
           leaf prefix-length {
             type uint8 {
               range "0..128";
             }
             mandatory true;
             status deprecated;
             description
               "The length of the subnet prefix.";
           }
           leaf origin {
             type ip-address-origin;
             status deprecated;
             description
               "The origin of this address.";
           }
           leaf status {
             type enumeration {
               enum preferred {
                 description
                   "This is a valid address that can appear as the
                    destination or source address of a packet.";
               }
               enum deprecated {
                 description
                   "This is a valid but deprecated address that should
                    no longer be used as a source address in new
                    communications, but packets addressed to such an
                    address are processed as expected.";
               }
               enum invalid {
                 description
                   "This isn't a valid address, and it shouldn't appear
                    as the destination or source address of a packet.";
               }

Bjorklund                    Standards Track                   [Page 23]
RFC 8344                   YANG IP Management                 March 2018

               enum inaccessible {
                 description
                   "The address is not accessible because the interface
                    to which this address is assigned is not
                    operational.";
               }
               enum unknown {
                 description
                   "The status cannot be determined for some reason.";
               }
               enum tentative {
                 description
                   "The uniqueness of the address on the link is being
                    verified.  Addresses in this state should not be
                    used for general communication and should only be
                    used to determine the uniqueness of the address.";
               }
               enum duplicate {
                 description
                   "The address has been determined to be non-unique on
                    the link and so must not be used.";
               }
               enum optimistic {
                 description
                   "The address is available for use, subject to
                    restrictions, while its uniqueness on a link is
                    being verified.";
               }
             }
             status deprecated;
             description
               "The status of an address.  Most of the states correspond
                to states from the IPv6 Stateless Address
                Autoconfiguration protocol.";
             reference
               "RFC 4293: Management Information Base for the
                          Internet Protocol (IP)
                          - IpAddressStatusTC
                RFC 4862: IPv6 Stateless Address Autoconfiguration";
           }
         }

Bjorklund                    Standards Track                   [Page 24]
RFC 8344                   YANG IP Management                 March 2018

         list neighbor {
           key "ip";
           status deprecated;
           description
             "A list of mappings from IPv6 addresses to
              link-layer addresses.

              This list represents the Neighbor Cache.";
           reference
             "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";

           leaf ip {
             type inet:ipv6-address-no-zone;
             status deprecated;
             description
               "The IPv6 address of the neighbor node.";
           }
           leaf link-layer-address {
             type yang:phys-address;
             status deprecated;
             description
               "The link-layer address of the neighbor node.";
           }
           leaf origin {
             type neighbor-origin;
             status deprecated;
             description
               "The origin of this neighbor entry.";
           }
           leaf is-router {
             type empty;
             status deprecated;
             description
               "Indicates that the neighbor node acts as a router.";
           }
           leaf state {
             type enumeration {
               enum incomplete {
                 description
                   "Address resolution is in progress, and the
                    link-layer address of the neighbor has not yet been
                    determined.";
               }
               enum reachable {
                 description
                   "Roughly speaking, the neighbor is known to have been
                    reachable recently (within tens of seconds ago).";
               }

Bjorklund                    Standards Track                   [Page 25]
RFC 8344                   YANG IP Management                 March 2018

               enum stale {
                 description
                   "The neighbor is no longer known to be reachable, but
                    until traffic is sent to the neighbor no attempt
                    should be made to verify its reachability.";
               }
               enum delay {
                 description
                   "The neighbor is no longer known to be reachable, and
                    traffic has recently been sent to the neighbor.
                    Rather than probe the neighbor immediately, however,
                    delay sending probes for a short while in order to
                    give upper-layer protocols a chance to provide
                    reachability confirmation.";
               }
               enum probe {
                 description
                   "The neighbor is no longer known to be reachable, and
                    unicast Neighbor Solicitation probes are being sent
                    to verify reachability.";
               }
             }
             status deprecated;
             description
               "The Neighbor Unreachability Detection state of this
                entry.";
             reference
               "RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
                          Section 7.3.2";
           }
         }
       }
     }
   }
   <CODE ENDS>

Bjorklund                    Standards Track                   [Page 26]
RFC 8344                   YANG IP Management                 March 2018

5.  IANA Considerations

   This document registers a URI in the "IETF XML Registry" [RFC3688].
   Following the format in RFC 3688, the following registration has been
   made.

      URI: urn:ietf:params:xml:ns:yang:ietf-ip
      Registrant Contact: The NETMOD WG of the IETF.
      XML: N/A; the requested URI is an XML namespace.

   This document registers a YANG module in the "YANG Module Names"
   registry [RFC6020].

      Name:         ietf-ip
      Namespace:    urn:ietf:params:xml:ns:yang:ietf-ip
      Prefix:       ip
      Reference:    RFC 8344

6.  Security Considerations

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC5246].

   The NETCONF access control model [RFC8341] provides the means to
   restrict access for particular NETCONF or RESTCONF users to a
   preconfigured subset of all available NETCONF or RESTCONF protocol
   operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.  These are the subtrees and data nodes
   and their sensitivity/vulnerability:

   ipv4/enabled and ipv6/enabled:  These leafs are used to enable or
      disable IPv4 and IPv6 on a specific interface.  By enabling a
      protocol on an interface, an attacker might be able to create an
      unsecured path into a node (or through it if routing is also
      enabled).  By disabling a protocol on an interface, an attacker

Bjorklund                    Standards Track                   [Page 27]
RFC 8344                   YANG IP Management                 March 2018

      RFC 6458                    SCTP Sockets API               December 2011

8.1.26.  Enable or Disable Explicit EOR Marking (SCTP_EXPLICIT_EOR)

   This boolean flag is used to enable or disable explicit end of record
   (EOR) marking.  When this option is enabled, a user may make multiple
   send system calls to send a record and must indicate that they are
   finished sending a particular record by including the SCTP_EOR flag.
   If this boolean flag is disabled, then each individual send system
   call is considered to have an SCTP_EOR indicator set on it implicitly
   without the user having to explicitly add this flag.  The default
   is off.

   This option expects an integer boolean flag, where a non-zero value
   turns on the option, and a zero value turns off the option.

8.1.27.  Enable SCTP Port Reusage (SCTP_REUSE_PORT)

   This option only supports one-to-one style SCTP sockets.  If used on
   a one-to-many style SCTP socket, an error is indicated.

   This option expects an integer boolean flag, where a non-zero value
   turns on the option, and a zero value turns off the option.

   This socket option must not be used after calling bind() or
   sctp_bindx() for a one-to-one style SCTP socket.  If using bind() or
   sctp_bindx() on a socket with the SCTP_REUSE_PORT option, all other
   SCTP sockets bound to the same port must have set the SCTP_REUSE_PORT
   option.  Calling bind() or sctp_bindx() for a socket without having
   set the SCTP_REUSE_PORT option will fail if there are other sockets
   bound to the same port.  At most one socket being bound to the same
   port may be listening.

   It should be noted that the behavior of the socket-level socket
   option to reuse ports and/or addresses for SCTP sockets is
   unspecified.

8.1.28.  Set Notification Event (SCTP_EVENT)

   This socket option is used to set a specific notification option.
   Please see Section 6.2.2 for a full description of this option and
   its usage.

8.1.29.  Enable or Disable the Delivery of SCTP_RCVINFO as Ancillary
         Data (SCTP_RECVRCVINFO)

   Setting this option specifies that SCTP_RCVINFO (defined in
   Section 5.3.5) is returned as ancillary data by recvmsg().

Stewart, et al.               Informational                    [Page 79]
RFC 6458                    SCTP Sockets API               December 2011

   This option expects an integer boolean flag, where a non-zero value
   turns on the option, and a zero value turns off the option.

8.1.30.  Enable or Disable the Delivery of SCTP_NXTINFO as Ancillary
         Data (SCTP_RECVNXTINFO)

   Setting this option specifies that SCTP_NXTINFO (defined in
   Section 5.3.6) is returned as ancillary data by recvmsg().

   This option expects an integer boolean flag, where a non-zero value
   turns on the option, and a zero value turns off the option.

8.1.31.  Set Default Send Parameters (SCTP_DEFAULT_SNDINFO)

   Applications that wish to use the sendto() system call may wish to
   specify a default set of parameters that would normally be supplied
   through the inclusion of ancillary data.  This socket option allows
   such an application to set the default sctp_sndinfo structure.  The
   application that wishes to use this socket option simply passes the
   sctp_sndinfo structure (defined in Section 5.3.4) to this call.  The
   input parameters accepted by this call include snd_sid, snd_flags,
   snd_ppid, and snd_context.  The snd_flags parameter is composed of a
   bitwise OR of SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL.  The
   snd_assoc_id field specifies the association to which to apply the
   parameters.  For a one-to-many style socket, any of the predefined
   constants are also allowed in this field.  The field is ignored for
   one-to-one style sockets.

8.1.32.  Set Default PR-SCTP Parameters (SCTP_DEFAULT_PRINFO)

   This option sets and gets the default parameters for PR-SCTP.  They
   can be overwritten by specific information provided in send calls.

   The following structure is used to access and modify these
   parameters:

   struct sctp_default_prinfo {
     uint16_t pr_policy;
     uint32_t pr_value;
     sctp_assoc_t pr_assoc_id;
   };

   pr_policy:  This field is the same as that described in
      Section 5.3.7.

   pr_value:  This field is the same as that described in Section 5.3.7.

Stewart, et al.               Informational                    [Page 80]
RFC 6458                    SCTP Sockets API               December 2011

   pr_assoc_id:  This field is ignored for one-to-one style sockets.
      For one-to-many style sockets, pr_assoc_id can be a particular
      association identifier or SCTP_{FUTURE|CURRENT|ALL}_ASSOC.

8.2.  Read-Only Options

   The options defined in this subsection are read-only.  Using this
   option in a setsockopt() call will result in an error indicating
   EOPNOTSUPP.

8.2.1.  Association Status (SCTP_STATUS)

   Applications can retrieve current status information about an
   association, including association state, peer receiver window size,
   number of unacknowledged DATA chunks, and number of DATA chunks
   pending receipt.  This information is read-only.

   The following structure is used to access this information:

   struct sctp_status {
     sctp_assoc_t sstat_assoc_id;
     int32_t  sstat_state;
     uint32_t sstat_rwnd;
     uint16_t sstat_unackdata;
     uint16_t sstat_penddata;
     uint16_t sstat_instrms;
     uint16_t sstat_outstrms;
     uint32_t sstat_fragmentation_point;
     struct sctp_paddrinfo sstat_primary;
   };

   sstat_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, it holds the identifier
      for the association.  All notifications for a given association
      have the same association identifier.  The special SCTP_{FUTURE|
      CURRENT|ALL}_ASSOC cannot be used.

   sstat_state:  This contains the association's current state, i.e.,
      one of the following values:

      *  SCTP_CLOSED

      *  SCTP_BOUND

      *  SCTP_LISTEN

      *  SCTP_COOKIE_WAIT

Stewart, et al.               Informational                    [Page 81]
RFC 6458                    SCTP Sockets API               December 2011

      *  SCTP_COOKIE_ECHOED

      *  SCTP_ESTABLISHED

      *  SCTP_SHUTDOWN_PENDING

      *  SCTP_SHUTDOWN_SENT

      *  SCTP_SHUTDOWN_RECEIVED

      *  SCTP_SHUTDOWN_ACK_SENT

   sstat_rwnd:  This contains the association peer's current receiver
      window size.

   sstat_unackdata:  This is the number of unacknowledged DATA chunks.

   sstat_penddata:  This is the number of DATA chunks pending receipt.

   sstat_instrms:  This is the number of streams that the peer will be
      using outbound.

   sstat_outstrms:  This is the number of outbound streams that the
      endpoint is allowed to use.

   sstat_fragmentation_point:  This is the size at which SCTP
      fragmentation will occur.

   sstat_primary:  This is information on the current primary peer
      address.

   To access these status values, the application calls getsockopt()
   with the option name SCTP_STATUS.

8.2.2.  Peer Address Information (SCTP_GET_PEER_ADDR_INFO)

   Applications can retrieve information about a specific peer address
   of an association, including its reachability state, congestion
   window, and retransmission timer values.  This information is
   read-only.

   The following structure is used to access this information:

   struct sctp_paddrinfo {
     sctp_assoc_t spinfo_assoc_id;
     struct sockaddr_storage spinfo_address;
     int32_t  spinfo_state;
     uint32_t spinfo_cwnd;

Stewart, et al.               Informational                    [Page 82]
RFC 6458                    SCTP Sockets API               December 2011

     uint32_t spinfo_srtt;
     uint32_t spinfo_rto;
     uint32_t spinfo_mtu;
   };

   spinfo_assoc_id:  This parameter is ignored for one-to-one style
      sockets.

      For one-to-many style sockets, this field may be filled by the
      application, and if so, this field will have priority in looking
      up the association instead of using the address specified in
      spinfo_address.  Note that if the address does not belong to the
      association specified, then this call will fail.  If the
      application does not fill in the spinfo_assoc_id, then the address
      will be used to look up the association, and on return, this field
      will have the valid association identifier.  In other words, this
      call can be used to translate an address into an association
      identifier.  Note that the predefined constants are not allowed
      for this option.

   spinfo_address:  This is filled by the application and contains the
      peer address of interest.

   spinfo_state:  This contains the peer address's state:

      SCTP_UNCONFIRMED:  This is the initial state of a peer address.

      SCTP_ACTIVE:  This state is entered the first time after path
         verification.  It can also be entered if the state is
         SCTP_INACTIVE and the path supervision detects that the peer
         address is reachable again.

      SCTP_INACTIVE:  This state is entered whenever a path failure is
         detected.

   spinfo_cwnd:  This contains the peer address's current congestion
      window.

   spinfo_srtt:  This contains the peer address's current smoothed
      round-trip time calculation in milliseconds.

   spinfo_rto:  This contains the peer address's current retransmission
      timeout value in milliseconds.

   spinfo_mtu:  This is the current Path MTU of the peer address.  It is
      the number of bytes available in an SCTP packet for chunks.

Stewart, et al.               Informational                    [Page 83]
RFC 6458                    SCTP Sockets API               December 2011

8.2.3.  Get the List of Chunks the Peer Requires to Be Authenticated
        (SCTP_PEER_AUTH_CHUNKS)

   This option gets a list of chunk types (see [RFC4960]) for a
   specified association that the peer requires to be received
   authenticated only.

   The following structure is used to access these parameters:

   struct sctp_authchunks {
     sctp_assoc_t gauth_assoc_id;
     uint32_t gauth_number_of_chunks
     uint8_t  gauth_chunks[];
   };

   gauth_assoc_id:  This parameter indicates for which association the
      user is requesting the list of peer-authenticated chunks.  For
      one-to-one style sockets, this parameter is ignored.  Note that
      the predefined constants are not allowed with this option.

   gauth_number_of_chunks:  This parameter gives the number of elements
      in the array gauth_chunks.

   gauth_chunks:  This parameter contains an array of chunk types that
      the peer is requesting to be authenticated.  If the passed-in
      buffer size is not large enough to hold the list of chunk types,
      ENOBUFS is returned.

8.2.4.  Get the List of Chunks the Local Endpoint Requires to Be
        Authenticated (SCTP_LOCAL_AUTH_CHUNKS)

   This option gets a list of chunk types (see [RFC4960]) for a
   specified association that the local endpoint requires to be received
   authenticated only.

   The following structure is used to access these parameters:

   struct sctp_authchunks {
     sctp_assoc_t gauth_assoc_id;
     uint32_t gauth_number_of_chunks;
     uint8_t  gauth_chunks[];
   };

   gauth_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, the application may fill
      in an association identifier or SCTP_FUTURE_ASSOC.  It is an error
      to use SCTP_{CURRENT|ALL}_ASSOC in gauth_assoc_id.

Stewart, et al.               Informational                    [Page 84]
RFC 6458                    SCTP Sockets API               December 2011

   gauth_number_of_chunks:  This parameter gives the number of elements
      in the array gauth_chunks.

   gauth_chunks:  This parameter contains an array of chunk types that
      the local endpoint is requesting to be authenticated.  If the
      passed-in buffer is not large enough to hold the list of chunk
      types, ENOBUFS is returned.

8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)

   This option gets the current number of associations that are attached
   to a one-to-many style socket.  The option value is an uint32_t.
   Note that this number is only a snapshot.  This means that the number
   of associations may have changed when the caller gets back the option
   result.

   For a one-to-one style socket, this socket option results in an
   error.

8.2.6.  Get the Current Identifiers of Associations
        (SCTP_GET_ASSOC_ID_LIST)

   This option gets the current list of SCTP association identifiers of
   the SCTP associations handled by a one-to-many style socket.

   The option value has the structure

   struct sctp_assoc_ids {
     uint32_t gaids_number_of_ids;
     sctp_assoc_t gaids_assoc_id[];
   };

   The caller must provide a large enough buffer to hold all association
   identifiers.  If the buffer is too small, an error must be returned.
   The user can use the SCTP_GET_ASSOC_NUMBER socket option to get an
   idea of how large the buffer has to be.  gaids_number_of_ids gives
   the number of elements in the array gaids_assoc_id.  Note also that
   some or all of sctp_assoc_t returned in the array may become invalid
   by the time the caller gets back the result.

   For a one-to-one style socket, this socket option results in an
   error.

8.3.  Write-Only Options

   The options defined in this subsection are write-only.  Using this
   option in a getsockopt() or sctp_opt_info() call will result in an
   error indicating EOPNOTSUPP.

might be able to force packets to be routed through some other
      interface or deny access to some or all of the network via that
      protocol.

   ipv4/address and ipv6/address:  These lists specify the configured IP
      addresses on an interface.  By modifying this information, an
      attacker can cause a node to either ignore messages destined to it
      or accept (at least at the IP layer) messages it would otherwise
      ignore.  The use of filtering or security associations may reduce
      the potential damage in the latter case.

   ipv4/forwarding and ipv6/forwarding:  These leafs allow a client to
      enable or disable the forwarding functions on the entity.  By
      disabling the forwarding functions, an attacker would possibly be
      able to deny service to users.  By enabling the forwarding
      functions, an attacker could open a conduit into an area.  This
      might result in the area providing transit for packets it
      shouldn't, or it might allow the attacker access to the area,
      bypassing security safeguards.

   ipv6/autoconf:  The leafs in this branch control the
      autoconfiguration of IPv6 addresses and, in particular, whether or
      not temporary addresses are used.  By modifying the corresponding
      leafs, an attacker might impact the addresses used by a node and
      -- thus, indirectly -- the privacy of the users using the node.

   ipv4/mtu and ipv6/mtu:  Setting these leafs to very small values can
      be used to slow down interfaces.

Bjorklund                    Standards Track                   [Page 28]
RFC 8344                   YANG IP Management                 March 2018

7.  References

7.1.  Normative References

   [RFC791]   Postel, J., "Internet Protocol", STD 5, RFC 791,
              DOI 10.17487/RFC0791, September 1981,
              <https://www.rfc-editor.org/info/rfc791>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
              "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
              DOI 10.17487/RFC4861, September 2007,
              <https://www.rfc-editor.org/info/rfc4861>.

   [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
              Address Autoconfiguration", RFC 4862,
              DOI 10.17487/RFC4862, September 2007,
              <https://www.rfc-editor.org/info/rfc4862>.

   [RFC4941]  Narten, T., Draves, R., and S. Krishnan, "Privacy
              Extensions for Stateless Address Autoconfiguration in
              IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
              <https://www.rfc-editor.org/info/rfc4941>.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <https://www.rfc-editor.org/info/rfc5246>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

Bjorklund                    Standards Track                   [Page 29]
RFC 8344                   YANG IP Management                 March 2018

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
              RFC 2119 Key Words", BCP 14, RFC 8174,
              DOI 10.17487/RFC8174, May 2017,
              <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

   [W3C.REC-xml-20081126]
              Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
              F. Yergeau, "Extensible Markup Language (XML) 1.0
              (Fifth Edition)", World Wide Web Consortium Recommendation
              REC-xml-20081126, November 2008,
              <https://www.w3.org/TR/2008/REC-xml-20081126>.

Bjorklund                    Standards Track                   [Page 30]
RFC 8344                   YANG IP Management                 March 2018

7.2.  Informative References

   [RFC826]   Plummer, D., "An Ethernet Address Resolution Protocol: Or
              Converting Network Protocol Addresses to 48.bit Ethernet
              Address for Transmission on Ethernet Hardware", STD 37,
              RFC 826, DOI 10.17487/RFC0826, November 1982,
              <https://www.rfc-editor.org/info/rfc826>.

   [RFC4293]  Routhier, S., Ed., "Management Information Base for the
              Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
              April 2006, <https://www.rfc-editor.org/info/rfc4293>.

   [RFC7217]  Gont, F., "A Method for Generating Semantically Opaque
              Interface Identifiers with IPv6 Stateless Address
              Autoconfiguration (SLAAC)", RFC 7217,
              DOI 10.17487/RFC7217, April 2014,
              <https://www.rfc-editor.org/info/rfc7217>.

   [RFC8022]  Lhotka, L. and A. Lindem, "A YANG Data Model for Routing
              Management", RFC 8022, DOI 10.17487/RFC8022,
              November 2016, <https://www.rfc-editor.org/info/rfc8022>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

Bjorklund                    Standards Track                   [Page 31]
RFC 8344                   YANG IP Management                 March 2018

Appendix A.  Example: NETCONF <get-config> Reply

   This section gives an example of a reply to the NETCONF <get-config>
   request for the running configuration datastore for a device that
   implements the data model defined in this document.

   The XML [W3C.REC-xml-20081126] snippets that follow in this section
   and in Appendix B are provided as examples only.

   <rpc-reply
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
       message-id="101">
     <data>
       <interfaces
           xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
           xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
         <interface>
           <name>eth0</name>
           <typeStewart, et al.               Informational                    [Page 85]
RFC 6458                    SCTP Sockets API               December 2011

8.3.1.  Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)

   This call requests that the peer mark the enclosed address as the
   association primary (see [RFC5061]).  The enclosed address must be
   one of the association's locally bound addresses.

   The following structure is used to make a set peer primary request:

   struct sctp_setpeerprim {
     sctp_assoc_t sspp_assoc_id;
     struct sockaddr_storage sspp_addr;
   };

   sspp_assoc_id:  This parameter is ignored for one-to-one style
      sockets.  For one-to-many style sockets, it identifies the
      association for this request.  Note that the predefined constants
      are not allowed for this option.

   sspp_addr:  The address to set as primary.

8.3.2.  Add a Chunk That Must Be Authenticated (SCTP_AUTH_CHUNK)

   This set option adds a chunk type that the user is requesting to be
   received only in an authenticated way.  Changes to the list of chunks
   will only affect future associations on the socket.

   The following structure is used to add a chunk:

   struct sctp_authchunk {
     uint8_t sauth_chunk;
   };

   sauth_chunk:  This parameter contains a chunk type that the user is
      requesting to be authenticated.

   The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE, and AUTH
   chunks must not be used.  If they are used, an error must be
   returned.  The usage of this option enables SCTP AUTH in cases where
   it is not required by other means (for example, the use of dynamic
   address reconfiguration).

8.3.3.  Set a Shared Key (SCTP_AUTH_KEY)

   This option will set a shared secret key that is used to build an
   association shared key.

   The following structure is used to access and modify these
   parameters:

Stewart, et al.               Informational                    [Page 86]
RFC 6458                    SCTP Sockets API               December 2011

   struct sctp_authkey {
     sctp_assoc_t sca_assoc_id;
     uint16_t sca_keynumber;
     uint16_t sca_keylength;
     uint8_t  sca_key[];
   };

   sca_assoc_id:  This parameter indicates on what association the
      shared key is being set.  The special SCTP_{FUTURE|CURRENT|
      ALL}_ASSOC can be used.  For one-to-one style sockets, this
      parameter is ignored.  Note, however, that on one-to-one style
      sockets, this option will set a key on the association if the
      socket is connected; otherwise, this option will set a key on the
      endpoint.

   sca_keynumber:  This parameter is the shared key identifier by which
      the application will refer to this shared key.  If a key of the
      specified index already exists, then this new key will replace the
      old existing key.  Note that shared key identifier '0' defaults to
      a null key.

   sca_keylength:  This parameter is the length of the array sca_key.

   sca_key:  This parameter contains an array of bytes that is to be
      used by the endpoint (or association) as the shared secret key.
      Note that if the length of this field is zero, a null key is set.

8.3.4.  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)

   This set option indicates that the application will no longer send
   user messages using the indicated key identifier.

   struct sctp_authkeyid {
     sctp_assoc_t scact_assoc_id;
     uint16_t scact_keynumber;
   };

   scact_assoc_id:  This parameter indicates from which association the
      shared key identifier is being deleted.  The special SCTP_{FUTURE|
      CURRENT|ALL}_ASSOC can be used.  For one-to-one style sockets,
      this parameter is ignored.  Note, however, that this option will
      deactivate the key from the association if the socket is
      connected; otherwise, this option will deactivate the key from the
      endpoint.

Stewart, et al.               Informational                    [Page 87]
RFC 6458                    SCTP Sockets API               December 2011

   scact_keynumber:  This parameter is the shared key identifier that
      the application is requesting to be deactivated.  The key
      identifier must correspond to an existing shared key.  Note that
      if this parameter is zero, use of the null key identifier '0' is
      deactivated on the endpoint and/or association.

   The currently active key cannot be deactivated.

8.3.5.  Delete a Shared Key (SCTP_AUTH_DELETE_KEY)

   This set option will delete an SCTP association's shared secret key
   that has been deactivated.

   struct sctp_authkeyid {
     sctp_assoc_t scact_assoc_id;
     uint16_t scact_keynumber;
   };

   scact_assoc_id:  This parameter indicates from which association the
      shared key identifier is being deleted.  The special SCTP_{FUTURE|
      CURRENT|ALL}_ASSOC can be used.  For one-to-one style sockets,
      this parameter is ignored.  Note, however, that this option will
      delete the key from the association if the socket is connected;
      otherwise, this option will delete the key from the endpoint.

   scact_keynumber:  This parameter is the shared key identifier that
      the application is requesting to be deleted.  The key identifier
      must correspond to an existing shared key and must not be in use
      for any packet being sent by the SCTP implementation.  This means,
      in particular, that it must be deactivated first.  Note that if
      this parameter is zero, use of the null key identifier '0' is
      deleted from the endpoint and/or association.

   Only deactivated keys that are no longer used by an association can
   be deleted.

9.  New Functions

   Depending on the system, the following interface can be implemented
   as a system call or library function.

9.1.  sctp_bindx()

   This function allows the user to bind a specific subset of addresses
   or, if the SCTP extension described in [RFC5061] is supported, add or
   delete specific addresses.

Stewart, et al.               Informational                    [Page 88]
RFC 6458                    SCTP Sockets API               December 2011

   The function prototype is

   int sctp_bindx(int sd,
                  struct sockaddr *addrs,
                  int addrcnt,
                  int flags);

   If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
   If the sd is an IPv6 socket, the addresses passed can either be IPv4
   or IPv6 addresses.

   A single address may be specified as INADDR_ANY for an IPv4 address,
   or as IN6ADDR_ANY_INIT or in6addr_any for an IPv6 address; see
   Section 3.1.2 for this usage.

   addrs is a pointer to an array of one or more socket addresses.  Each
   address is contained in its appropriate structure.  For an IPv6
   socket, an array of sockaddr_in6 is used.  For an IPv4 socket, an
   array of sockaddr_in is used.  The caller specifies the number of
   addresses in the array with addrcnt.  Note that the wildcard
   addresses cannot be used in combination with non-wildcard addresses
   on a socket with this function; doing so will result in an error.

   On success, sctp_bindx() returns 0.  On failure, sctp_bindx() returns
   -1 and sets errno to the appropriate error code.

   For SCTP, the port given in each socket address must be the same, or
   sctp_bindx() will fail, setting errno to EINVAL.

   The flags parameter is formed from the bitwise OR of zero or more of
   the following currently defined flags:

   o  SCTP_BINDX_ADD_ADDR

   o  SCTP_BINDX_REM_ADDR

   SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
   socket (i.e., endpoint), and SCTP_BINDX_REM_ADDR directs SCTP to
   remove the given addresses from the socket.  The two flags are
   mutually exclusive; if both are given, sctp_bindx() will fail with
   EINVAL.  A caller may not remove all addresses from a socket;
   sctp_bindx() will reject such an attempt with EINVAL.

   An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
   additional addresses with an endpoint after calling bind().  Or, an
   application can use sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some
   addresses with which a listening socket is associated, so that no new
   association accepted will be associated with these addresses.  If the

Stewart, et al.               Informational                    [Page 89]
RFC 6458                    SCTP Sockets API               December 2011

   endpoint supports dynamic address reconfiguration, an
   SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause an endpoint to
   send the appropriate message to its peers to change the peers'
   address lists.

   Adding and removing addresses from established associations is an
   optional functionality.  Implementations that do not support this
   functionality should return -1 and set errno to EOPNOTSUPP.

   sctp_bindx() can be called on an already bound socket or on an
   unbound socket.  If the socket is unbound and the first port number
   in the addrs parameter is zero, the kernel will choose a port number.
   All port numbers after the first one being 0 must also be zero.  If
   the first port number is not zero, the following port numbers must be
   zero or have the same value as the first one.  For an already bound
   socket, all port numbers provided must be the bound one or 0.

   sctp_bindx() is an atomic operation.  Therefore, the binding will
   either succeed on all addresses or fail on all addresses.  If
   multiple addresses are provided and the sctp_bindx() call fails,
   there is no indication of which address is responsible for the
   failure.  The only way to identify the specific error indication is
   to call sctp_bindx() sequentially with only one address per call.

9.2.  sctp_peeloff()

   After an association is established on a one-to-many style socket,
   the application may wish to branch off the association into a
   separate socket/file descriptor.

   This is particularly desirable when, for instance, the application
   wishes to have a number of sporadic message senders/receivers remain
   under the original one-to-many style socket but branch off these
   associations carrying high-volume data traffic into their own
   separate socket descriptors.

   The application uses the sctp_peeloff() call to branch off an
   association into a separate socket.  (Note that the semantics are
   somewhat changed from the traditional one-to-one style accept()
   call.)  Note also that the new socket is a one-to-one style socket.
   Thus, it will be confined to operations allowed for a one-to-one
   style socket.

   The function prototype is

   int sctp_peeloff(int sd,
                    sctp_assoc_t assoc_id);

Stewart, et al.               Informational                    [Page 90]
RFC 6458                    SCTP Sockets API               December 2011

   and the arguments are

   sd:  The original one-to-many style socket descriptor returned from
      the socket() system call (see Section 3.1.1).

   assoc_id:  The specified identifier of the association that is to be
      branched off to a separate file descriptor.  (Note that in a
      traditional one-to-one style accept() call, this would be an out
      parameter, but for the one-to-many style call, this is an in
      parameter.)

   The function returns a non-negative file descriptor representing the
   branched-off association, or -1 if an error occurred.  The variable
   errno is then set appropriately.

9.3.  sctp_getpaddrs()

   sctp_getpaddrs() returns all peer addresses in an association.

   The function prototype is

   int sctp_getpaddrs(int sd,
                      sctp_assoc_t id,
                      struct sockaddr **addrs);

   On return, addrs will point to a dynamically allocated array of
   sockaddr structures of the appropriate type for the socket type.  The
   caller should use sctp_freepaddrs() to free the memory.  Note that
   the in/out parameter addrs must not be NULL.

   If sd is an IPv4 socket, the addresses returned will be all IPv4
   addresses.  If sd is an IPv6 socket, the addresses returned can be a
   mix of IPv4 or IPv6 addresses, with IPv4 addresses returned according
   to the SCTP_I_WANT_MAPPED_V4_ADDR option setting.

   For one-to-many style sockets, id specifies the association to query.
   For one-to-one style sockets, id is ignored.

   On success, sctp_getpaddrs() returns the number of peer addresses in
   the association.  If there is no association on this socket,
   sctp_getpaddrs() returns 0, and the value of *addrs is undefined.  If
   an error occurs, sctp_getpaddrs() returns -1, and the value of *addrs
   is undefined.

Stewart, et al.               Informational                    [Page 91]
RFC 6458                    SCTP Sockets API               December 2011

9.4.  sctp_freepaddrs()

   sctp_freepaddrs() frees all resources allocated by sctp_getpaddrs().

   The function prototype is

   void sctp_freepaddrs(struct sockaddr *addrs);

   and addrs is the array of peer addresses returned by
   sctp_getpaddrs().

9.5.  sctp_getladdrs()

   sctp_getladdrs() returns all locally bound addresses on a socket.

   The function prototype is

   int sctp_getladdrs(int sd,
                      sctp_assoc_t id,
                      struct sockaddr **addrs);

   On return, addrs will point to a dynamically allocated array of
   sockaddr structures of the appropriate type for the socket type.  The
   caller should use sctp_freeladdrs() to free the memory.  Note that
   the in/out parameter addrs must not be NULL.

   If sd is an IPv4 socket, the addresses returned will be all IPv4
   addresses.  If sd is an IPv6 socket, the addresses returned can be a
   mix of IPv4 or IPv6 addresses, with IPv4 addresses returned according
   to the SCTP_I_WANT_MAPPED_V4_ADDR option setting.

   For one-to-many style sockets, id specifies the association to query.
   For one-to-one style sockets, id is ignored.

   If the id field is set to the value '0', then the locally bound
   addresses are returned without regard to any particular association.

   On success, sctp_getladdrs() returns the number of local addresses
   bound to the socket.  If the socket is unbound, sctp_getladdrs()
   returns 0, and the value of *addrs is undefined.  If an error occurs,
   sctp_getladdrs() returns -1, and the value of *addrs is undefined.

Stewart, et al.               Informational                    [Page 92]
RFC 6458                    SCTP Sockets API               December 2011

9.6.  sctp_freeladdrs()

   sctp_freeladdrs() frees all resources allocated by sctp_getladdrs().

   The function prototype is

   void sctp_freeladdrs(struct sockaddr *addrs);

   and addrs is the array of local addresses returned by
   sctp_getladdrs().

9.7.  sctp_sendmsg() - DEPRECATED

   This function is deprecated; sctp_sendv() (see Section 9.12) should
   be used instead.

   An implementation may provide a library function (or possibly system
   call) to assist the user with the advanced features of SCTP.

   The function prototype is

   ssize_t sctp_sendmsg(int sd,
                        const void *msg,
                        size_t len,
                        const struct sockaddr *to,
                        socklen_t tolen,
                        uint32_t ppid,
                        uint32_t flags,
                        uint16_t stream_no,
                        uint32_t timetolive,
                        uint32_t context);

   and the arguments are

   sd:  The socket descriptor.

   msg:  The message to be sent.

   len:  The length of the message.

   to:  The destination address of the message.

   tolen:  The length of the destination address.

   ppid:  The same as sinfo_ppid (see Section 5.3.2).

   flags:  The same as sinfo_flags (see Section 5.3.2).

Stewart, et al.               Informational                    [Page 93]
RFC 6458                    SCTP Sockets API               December 2011

   stream_no:  The same as sinfo_stream (see Section 5.3.2).

   timetolive:  The same as sinfo_timetolive (see Section 5.3.2).

   context:  The same as sinfo_context (see Section 5.3.2).

   The call returns the number of characters sent, or -1 if an error
   occurred.  The variable errno is then set appropriately.

   Sending a message using sctp_sendmsg() is atomic (unless explicit EOR
   marking is enabled on the socket specified by sd).

   Using sctp_sendmsg() on a non-connected one-to-one style socket for
   implicit connection setup may or may not work, depending on the SCTP
   implementation.

9.8.  sctp_recvmsg() - DEPRECATED

   This function is deprecated; sctp_recvv() (see Section 9.13) should
   be used instead.

   An implementation may provide a library function (or possibly system
   call) to assist the user with the advanced features of SCTP.  Note
   that in order for the sctp_sndrcvinfo structure to be filled in by
   sctp_recvmsg(), the caller must enable the sctp_data_io_event with
   the SCTP_EVENTS option.  Note that the setting of the
   SCTP_USE_EXT_RCVINFO will affect this function as well, causing the
   sctp_sndrcvinfo information to be extended.

   The function prototype is

   ssize_t sctp_recvmsg(int sd,
                        void *msg,
                        size_t len,
                        struct sockaddr *from,
                        socklen_t *fromlen
                        struct sctp_sndrcvinfo *sinfo
                        int *msg_flags);

   and the arguments are

   sd:  The socket descriptor.

   msg:  The message buffer to be filled.

   len:  The length of the message buffer.

Stewart, et al.               Informational                    [Page 94]
RFC 6458                    SCTP Sockets API               December 2011

   from:  A pointer to an address to be filled with the address of the
      sender of this message.

   fromlen:  An in/out parameter describing the from length.

   sinfo:  A pointer to an sctp_sndrcvinfo structure to be filled upon
      receipt of the message.

   msg_flags:  A pointer to an integer to be filled with any message
      flags (e.g., MSG_NOTIFICATION).  Note that this field is an in-out
      field.  Options for the receive may also be passed into the value
      (e.g., MSG_PEEK).  On return from the call, the msg_flags value
      will be different than what was sent in to the call.  If
      implemented via a recvmsg() call, the msg_flags parameter should
      only contain the value of the flags from the recvmsg() call.

   The call returns the number of bytes received, or -1 if an error
   occurred.  The variable errno is then set appropriately.

9.9.  sctp_connectx()

   An implementation may provide a library function (or possibly system
   call) to assist the user with associating to an endpoint that is
   multi-homed.  Much like sctp_bindx(), this call allows a caller to
   specify multiple addresses at which a peer can be reached.  The way
   the SCTP stack uses the list of addresses to set up the association
   is implementation dependent.  This function only specifies that the
   stack will try to make use of all of the addresses in the list when
   needed.

   Note that the list of addresses passed in is only used for setting up
   the association.  It does not necessarily equal the set of addresses
   the peer uses for the resulting association.  If the caller wants to
   find out the set of peer addresses, it must use sctp_getpaddrs() to
   retrieve them after the association has been set up.

   The function prototype is

   int sctp_connectx(int sd,
                     struct sockaddr *addrs,
                     int addrcnt,
                     sctp_assoc_t *id);

   and the arguments are

   sd:  The socket descriptor.

   addrs:  An array of addresses.

Stewart, et al.               Informational                    [Page 95]
RFC 6458                    SCTP Sockets API               December 2011

   addrcnt:  The number of addresses in the array.

   id:  An output parameter that, if passed in as non-NULL, will return
      the association identifier for the newly created association (if
      successful).

   The call returns 0 on success or -1 if an error occurred.  The
   variable errno is then set appropriately.

9.10.  sctp_send() - DEPRECATED

   This function is deprecated; sctp_sendv() should be used instead.

   An implementation may provide another alternative function or system
   call to assist an application with the sending of data without the
   use of the cmsghdr structures.

   The function prototype is

   ssize_t sctp_send(int sd,
                     const void *msg,
                     size_t len,
                     const struct sctp_sndrcvinfo *sinfo,
                     int flags);

   and the arguments are

   sd:  The socket descriptor.

   msg:  The message to be sent.

   len:  The length of the message.

   sinfo:  A pointer to an sctp_sndrcvinfo structure used as described
      in Section 5.3.2 for a sendmsg() call.

   flags:  The same flags as used by the sendmsg() call flags (e.g.,
      MSG_DONTROUTE).

   The call returns the number of bytes sent, or -1 if an error
   occurred.  The variable errno is then set appropriately.

   This function call may also be used to terminate an association using
   an association identifier by setting the sinfo.sinfo_flags to
   SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
   to be terminated.  In such a case, len can be zero.

Stewart, et al.               Informational                    [Page 96]
RFC 6458                    SCTP Sockets API               December 2011

   Using sctp_send() on a non-connected one-to-one style socket for
   implicit connection setup may or may not work, depending on the SCTP
   implementation.

   Sending a message using sctp_send() is atomic unless explicit EOR
   marking is enabled on the socket specified by sd.

9.11.  sctp_sendx() - DEPRECATED

   This function is deprecated; sctp_sendv() should be used instead.

   An implementation may provide another alternative function or system
   call to assist an application with the sending of data without the
   use of the cmsghdr structure, and to provide a list of addresses.
   The list of addresses is provided for implicit association setup.  In
   such a case, the list of addresses serves the same purpose as the
   addresses given in sctp_connectx() (see Section 9.9).

   The function prototype is

   ssize_t sctp_sendx(int sd,
                      const void *msg,
                      size_t len,
                      struct sockaddr *addrs,
                      int addrcnt,
                      struct sctp_sndrcvinfo *sinfo,
                      int flags);

   and the arguments are

   sd:  The socket descriptor.

   msg:  The message to be sent.

   len:  The length of the message.

   addrs:  An array of addresses.

   addrcnt:  The number of addresses in the array.

   sinfo:  A pointer to an sctp_sndrcvinfo structure used as described
      in Section 5.3.2 for a sendmsg() call.

   flags:  The same flags as used by the sendmsg() call flags (e.g.,
      MSG_DONTROUTE).

   The call returns the number of bytes sent, or -1 if an error
   occurred.  The variable errno is then set appropriately.

Stewart, et al.               Informational                    [Page 97]
RFC 6458                    SCTP Sockets API               December 2011

   Note that in the case of implicit connection setup, on return from
   this call, the sinfo_assoc_id field of the sinfo structure will
   contain the new association identifier.

   This function call may also be used to terminate an association using
   an association identifier by setting the sinfo.sinfo_flags to
   SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
   to be terminated.  In such a case, len would be zero.

   Sending a message using sctp_sendx() is atomic unless explicit EOR
   marking is enabled on the socket specified by sd.

   Using sctp_sendx() on a non-connected one-to-one style socket for
   implicit connection setup may or may not work, depending on the SCTP
   implementation.

9.12.  sctp_sendv()

   The function prototype is

   ssize_t sctp_sendv(int sd,
                      const struct iovec *iov,
                      int iovcnt,
                      struct sockaddr *addrs,
                      int addrcnt,
                      void *info,
                      socklen_t infolen,
                      unsigned int infotype,
                      int flags);

   The function sctp_sendv() provides an extensible way for an
   application to communicate different send attributes to the SCTP
   stack when sending a message.  An implementation may provide
   sctp_sendv() as a library function or a system call.

   This document defines three types of attributes that can be used to
   describe a message to be sent.  They are struct sctp_sndinfo
   (Section 5.3.4), struct sctp_prinfo (Section 5.3.7), and struct
   sctp_authinfo (Section 5.3.8).  The following structure,
   sctp_sendv_spa, is defined to be used when more than one of the above
   attributes are needed to describe a message to be sent.

   struct sctp_sendv_spa {
     uint32_t sendv_flags;
     struct sctp_sndinfo sendv_sndinfo;
     struct sctp_prinfo sendv_prinfo;
     struct sctp_authinfo sendv_authinfo;
   };

Stewart, et al.               Informational                    [Page 98]
RFC 6458                    SCTP Sockets API               December 2011>ianaift:ethernetCsmacd</type>
           <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <address>
               <ip>192.0.2.1</ip>
               <prefix-length>24</prefix-length>
             </address>
           </ipv4>
           <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <mtu>1280</mtu>
             <address>
               <ip>2001:db8::10</ip>
               <prefix-length>32</prefix-length>
             </address>
             <dup-addr-detect-transmits>0</dup-addr-detect-transmits>
           </ipv6>
         </interface>
       </interfaces>
     </data>
   </rpc-reply>

Bjorklund                    Standards Track                   [Page 32]
RFC 8344                   YANG IP Management                 March 2018

Appendix B.  Example: NETCONF <get-data> Reply

   This section gives an example of a reply to the NETCONF <get-data>
   request for the operational state datastore for a device that
   implements the data model defined in this document.

   This example uses the "origin" annotation, which is defined in the
   module "ietf-origin" [RFC8342].

   <rpc-reply
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
       message-id="101">
     <data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-datastores">
       <interfaces
           xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
           xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
           xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">

         <interface or:origin="or:intended">
           <name>eth0</name>
           <type>ianaift:ethernetCsmacd</type>
           <!-- other parameters from ietf-interfaces omitted -->

           <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <enabled or:origin="or:default">true</enabled>
             <forwarding or:origin="or:default">false</forwarding>
             <mtu or:origin="or:system">1500</mtu>
             <address>
               <ip>192.0.2.1</ip>
               <prefix-length>24</prefix-length>
               <origin>static</origin>
             </address>
             <neighbor or:origin="or:learned">
               <ip>192.0.2.2</ip>
               <link-layer-address>
                 00:00:5E:00:53:AB
               </link-layer-address>
             </neighbor>
           </ipv4>
           <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
             <enabled or:origin="or:default">true</enabled>
             <forwarding or:origin="or:default">false</forwarding>
             &

   The sendv_flags field holds a bitwise OR of SCTP_SEND_SNDINFO_VALID,
   SCTP_SEND_PRINFO_VALID, and SCTP_SEND_AUTHINFO_VALID indicating if
   the sendv_sndinfo/sendv_prinfo/sendv_authinfo fields contain valid
   information.

   In future, when new send attributes are needed, new structures can be
   defined.  But those new structures do not need to be based on any of
   the above defined structures.

   The function takes the following arguments:

   sd:  The socket descriptor.

   iov:  The gather buffer.  The data in the buffer is treated as a
      single user message.

   iovcnt:  The number of elements in iov.

   addrs:  An array of addresses to be used to set up an association or
      a single address to be used to send the message.  NULL is passed
      in if the caller neither wants to set up an association nor wants
      to send the message to a specific address.

   addrcnt:  The number of addresses in the addrs array.

   info:  A pointer to the buffer containing the attribute associated
      with the message to be sent.  The type is indicated by the
      info_type parameter.

   infolen:  The length of info, in bytes.

   infotype:  Identifies the type of the information provided in info.
      The current defined values are as follows:

      SCTP_SENDV_NOINFO:  No information is provided.  The parameter
         info is a NULL pointer, and infolen is 0.

      SCTP_SENDV_SNDINFO:  The parameter info is pointing to a struct
         sctp_sndinfo.

      SCTP_SENDV_PRINFO:  The parameter info is pointing to a struct
         sctp_prinfo.

      SCTP_SENDV_AUTHINFO:  The parameter info is pointing to a struct
         sctp_authinfo.

      SCTP_SENDV_SPA:  The parameter info is pointing to a struct
         sctp_sendv_spa.

Stewart, et al.               Informational                    [Page 99]
RFC 6458                    SCTP Sockets API               December 2011

   flags:  The same flags as used by the sendmsg() call flags (e.g.,
      MSG_DONTROUTE).

   The call returns the number of bytes sent, or -1 if an error
   occurred.  The variable errno is then set appropriately.

   A note on the one-to-many style socket: The struct sctp_sndinfo
   attribute must always be used in order to specify the association on
   which the message is to be sent.  The only case where it is not
   needed is when this call is used to set up a new association.

   The caller provides a list of addresses in the addrs parameter to set
   up an association.  This function will behave like calling
   sctp_connectx() (see Section 9.9), first using the list of addresses
   and then calling sendmsg() with the given message and attributes.
   For a one-to-many style socket, if the struct sctp_sndinfo attribute
   is provided, the snd_assoc_id field must be 0.  When this function
   returns, the snd_assoc_id field will contain the association
   identifier of the newly established association.  Note that the
   struct sctp_sndinfo attribute is not required to set up an
   association for a one-to-many style socket.  If this attribute is not
   provided, the caller can enable the SCTP_ASSOC_CHANGE notification
   and use the SCTP_COMM_UP message to find out the association
   identifier.

   If the caller wants to send the message to a specific peer address
   (hence overriding the primary address), it can provide the specific
   address in the addrs parameter and provide a struct sctp_sndinfo
   attribute with the field snd_flags set to SCTP_ADDR_OVER.

   This function call may also be used to terminate an association.  The
   caller provides an sctp_sndinfo attribute with the snd_flags set to
   SCTP_EOF.  In this case, len would be zero.

   Sending a message using sctp_sendv() is atomic unless explicit EOR
   marking is enabled on the socket specified by sd.

Stewart, et al.               Informational                   [Page 100]
RFC 6458                    SCTP Sockets API               December 2011

9.13.  sctp_recvv()

   The function prototype is

   ssize_t sctp_recvv(int sd,
                      const struct iovec *iov,
                      int iovlen,
                      struct sockaddr *from,
                      socklen_t *fromlen,
                      void *info,
                      socklen_t *infolen,
                      unsigned int *infotype,
                      int *flags);

   The function sctp_recvv() provides an extensible way for the SCTP
   stack to pass up different SCTP attributes associated with a received
   message to an application.  An implementation may provide
   sctp_recvv() as a library function or as a system call.

   This document defines two types of attributes that can be returned by
   this call: the attribute of the received message and the attribute of
   the next message in the receive buffer.  The caller enables the
   SCTP_RECVRCVINFO and SCTP_RECVNXTINFO socket options, respectively,
   to receive these attributes.  Attributes of the received message are
   returned in struct sctp_rcvinfo (Section 5.3.5), and attributes of
   the next message are returned in struct sctp_nxtinfo (Section 5.3.6).
   If both options are enabled, both attributes are returned using the
   following structure.

   struct sctp_recvv_rn {
     struct sctp_rcvinfo recvv_rcvinfo;
     struct sctp_nxtinfo recvv_nxtinfo;
   };

   In future, new structures can be defined to hold new types of
   attributes.  The new structures do not need to be based on struct
   sctp_recvv_rn or struct sctp_rcvinfo.

   This function takes the following arguments:

   sd:  The socket descriptor.

   iov:  The scatter buffer.  Only one user message is returned in this
      buffer.

   iovlen:  The number of elements in iov.

Stewart, et al.               Informational                   [Page 101]
RFC 6458                    SCTP Sockets API               December 2011

   from:  A pointer to an address to be filled with the sender of the
      received message's address.

   fromlen:  An in/out parameter describing the from length.

   info:  A pointer to the buffer to hold the attributes of the received
      message.  The structure type of info is determined by the
      info_type parameter.

   infolen:  An in/out parameter describing the size of the info buffer.

   infotype:  On return, *info_type is set to the type of the info
      buffer.  The current defined values are as follows:

      SCTP_RECVV_NOINFO:  If both SCTP_RECVRCVINFO and SCTP_RECVNXTINFO
         options are not enabled, no attribute will be returned.  If
         only the SCTP_RECVNXTINFO option is enabled but there is no
         next message in the buffer, no attribute will be returned.  In
         these cases, *info_type will be set to SCTP_RECVV_NOINFO.

      SCTP_RECVV_RCVINFO:  The type of info is struct sctp_rcvinfo, and
         the attribute relates to the received message.

      SCTP_RECVV_NXTINFO:  The type of info is struct sctp_nxtinfo, and
         the attribute relates to the next message in the receive
         buffer.  This is the case when only the SCTP_RECVNXTINFO option
         is enabled and there is a next message in the buffer.

      SCTP_RECVV_RN:  The type of info is struct sctp_recvv_rn.  The
         recvv_rcvinfo field is the attribute of the received message,
         and the recvv_nxtinfo field is the attribute of the next
         message in the buffer.  This is the case when both
         SCTP_RECVRCVINFO and SCTP_RECVNXTINFO options are enabled and
         there is a next message in the receive buffer.

   flags:  A pointer to an integer to be filled with any message flags
      (e.g., MSG_NOTIFICATION).  Note that this field is an in/out
      parameter.  Options for the receive may also be passed into the
      value (e.g., MSG_PEEK).  On return from the call, the flags value
      will be different than what was sent in to the call.  If
      implemented via a recvmsg() call, the flags should only contain
      the value of the flags from the recvmsg() call when calling
      sctp_recvv(), and on return it has the value from msg_flags.

   The call returns the number of bytes received, or -1 if an error
   occurred.  The variable errno is then set appropriately.

Stewart, et al.               Informational                   [Page 102]
RFC 6458                    SCTP Sockets API               December 2011

10.  Security Considerations

   Many TCP and UDP implementations reserve port numbers below 1024 for
   privileged users.  If the target platform supports privileged users,
   the SCTP implementation should restrict the ability to call bind() or
   sctp_bindx() on these port numbers to privileged users.

   Similarly, unprivileged users should not be able to set protocol
   parameters that could result in the congestion control algorithm
   being more aggressive than permitted on the public Internet.  These
   parameters are as follows:

   o  struct sctp_rtoinfo

   If an unprivileged user inherits a one-to-many style socket with open
   associations on a privileged port, accepting new associations might
   be permitted, but opening new associations should not be permitted.
   This could be relevant for the r* family (rsh, rlogin, rwho, ...) of
   protocols.

   Applications using the one-to-many style sockets and using the
   interleave level (if 0) are subject to denial-of-service attacks, as
   described in Section 8.1.20.

   Applications needing transport layer security can use Datagram
   Transport Layer Security/SCTP (DTLS/SCTP) as specified in [RFC6083].
   This can be implemented using the sockets API described in this
   document.

11.  Acknowledgments

   Special acknowledgment is given to Ken Fujita, Jonathan Woods,
   Qiaobing Xie, and La Monte Yarroll, who helped extensively in the
   early formation of this document.

   The authors also wish to thank Kavitha Baratakke, Mike Bartlett,
   Martin Becke, Jon Berger, Mark Butler, Thomas Dreibholz, Andreas
   Fink, Scott Kimble, Jonathan Leighton, Renee Revis, Irene Ruengeler,
   Dan Wing, and many others on the TSVWG mailing list for contributing
   valuable comments.

   A special thanks to Phillip Conrad, for his suggested text, quick and
   constructive insights, and most of all his persistent fighting to
   keep the interface to SCTP usable for the application programmer.

Stewart, et al.               Informational                   [Page 103]
RFC 6458                    SCTP Sockets API               December 2011

12.  References

12.1.  Normative References

   [IEEE-1003.1-2008]
              Institute of Electrical and Electronics Engineers,
              "Information Technology - Portable Operating System
              Interface (POSIX)", IEEE Standard 1003.1, 2008.

   [RFC3493]  Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
              Stevens, "Basic Socket Interface Extensions for IPv6",
              RFC 3493, February 2003.

   [RFC3542]  Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
              "Advanced Sockets Application Program Interface (API) for
              IPv6", RFC 3542, May 2003.

   [RFC3758]  Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
              Conrad, "Stream Control Transmission Protocol (SCTP)
              Partial Reliability Extension", RFC 3758, May 2004.

   [RFC4895]  Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
              "Authenticated Chunks for the Stream Control Transmission
              Protocol (SCTP)", RFC 4895, August 2007.

   [RFC4960]  Stewart, R., Ed., "Stream Control Transmission Protocol",
              RFC 4960, September 2007.

   [RFC5061]  Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
              Kozuka, "Stream Control Transmission Protocol (SCTP)
              Dynamic Address Reconfiguration", RFC 5061,
              September 2007.

12.2.  Informative References

   [RFC0768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              August 1980.

   [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
              RFC 793, September 1981.

   [RFC1644]  Braden, R., "T/TCP -- TCP Extensions for Transactions
              Functional Specification", RFC 1644, July 1994.

Stewart, et al.               Informational                   [Page 104]
RFC 6458                    SCTP Sockets API               December 2011

   [RFC6083]  Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
              Transport Layer Security (DTLS) for Stream Control
              Transmission Protocol (SCTP)", RFC 6083, January 2011.

   [RFC6247]  Eggert, L., "Moving the Undeployed TCP Extensions RFC
              1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379,
              RFC 1644, and RFC 1693 to Historic Status", RFC 6247,
              May 2011.

Stewart, et al.               Informational                   [Page 105]
RFC 6458                    SCTP Sockets API               December 2011

Appendix A.  Example Using One-to-One Style Sockets

   The following code is an implementation of a simple client that sends
   a number of messages marked for unordered delivery to an echo server
   making use of all outgoing streams.  The example shows how to use
   some features of one-to-one style IPv4 SCTP sockets, including

   o  Creating and connecting an SCTP socket.

   o  Making a request to negotiate a number of outgoing streams.

   o  Determining the negotiated number of outgoing streams.

   o  Setting an adaptation layer indication.

   o  Sending messages with a given payload protocol identifier on a
      particular stream using sctp_sendv().

   <CODE BEGINS>
   /*

      Copyright (c) 2011 IETF Trust and the persons identified
      as authors of the code.  All rights reserved.

      Redistribution and use in source and binary forms, with
      or without modification, is permitted pursuant to, and subject
      to the license terms contained in, the Simplified BSD License
      set forth in Section 4.c of the IETF Trust's Legal Provisions
      Relating to IETF Documents (http://trustee.ietf.org/license-info).

   */

   #include <sys/types.h>
   #include <sys/socket.h>
   #include <netinet/in.h>
   #include <netinet/sctp.h>
   #include <arpa/inet.h>
   #include <string.h>
   #include <stdio.h>
   #include <unistd.h>
   #include <stdlib.h>

   #define PORT 9
   #define ADDR "127.0.0.1<mtu>1280</mtu>

Bjorklund                    Standards Track                   [Page 33]
RFC 8344                   YANG IP Management                 March 2018

             <address>
               <ip>2001:db8::10</ip>
               <prefix-length>32</prefix-length>
               <origin>static</origin>
               <status>preferred</status>
             </address>
             <address or:origin="or:learned">
               <ip>2001:db8::1:100</ip>
               <prefix-length>32</prefix-length>
               <origin>dhcp</origin>
               <status>preferred</status>
             </address>
             <dup-addr-detect-transmits>0</dup-addr-detect-transmits>
             <neighbor or:origin="or:learned">
               <ip>2001:db8::1</ip>
               <link-layer-address>
                 00:00:5E:00:53:AB
               </link-layer-address>
               <origin>dynamic</origin>
               <is-router/>
               <state>reachable</state>
             </neighbor>
             <neighbor or:origin="or:learned">
               <ip>2001:db8::4</ip>
               <origin>dynamic</origin>
               <state>incomplete</state>
             </neighbor>
           </ipv6>
         </interface>
       </interfaces>
     </data>
   </rpc-reply>

Acknowledgments

   The author wishes to thank Jeffrey Lange, Ladislav Lhotka, Juergen
   Schoenwaelder, and Dave Thaler for their helpful comments.

Author's Address

   Martin Bjorklund
   Tail-f Systems

   Email: mbj@tail-f.com

Bjorklund                    Standards Track                   [Page 34]