Skip to main content

MPLS Transport Encapsulation For The SFC NSH
draft-ietf-mpls-sfc-encapsulation-03

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 8596.
Authors Andrew G. Malis , Stewart Bryant , Joel M. Halpern , Wim Henderickx
Last updated 2019-03-14 (Latest revision 2019-03-01)
Replaces draft-malis-mpls-sfc-encapsulation
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Loa Andersson
Shepherd write-up Show Last changed 2019-01-15
IESG IESG state Became RFC 8596 (Informational)
Consensus boilerplate Yes
Telechat date (None)
Needs a YES.
Responsible AD Deborah Brungard
Send notices to Loa Andersson <loa@pi.nu>
IANA IANA review state IANA OK - No Actions Needed
draft-ietf-mpls-sfc-encapsulation-03
MPLS Working Group                                              A. Malis
Internet-Draft                                                 S. Bryant
Intended status: Informational                       Huawei Technologies
Expires: September 1, 2019                                    J. Halpern
                                                                Ericsson
                                                           W. Henderickx
                                                                   Nokia
                                                       February 28, 2019

              MPLS Transport Encapsulation For The SFC NSH
                  draft-ietf-mpls-sfc-encapsulation-03

Abstract

   This document describes how to use a Service Function Forwarder (SFF)
   Label (similar to a pseudowire label or VPN label) to indicate the
   presence of a Service Function Chaining (SFC) Network Service Header
   (NSH) between an MPLS label stack and the packet original packet/
   frame.  This allows SFC packets using the NSH to be forwarded between
   SFFs over an MPLS network, and to select one of multiple SFFs in the
   destination MPLS node.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 1, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of

Malis, et al.           Expires September 1, 2019               [Page 1]
Internet-Draft            MPLS for the SFC NSH             February 2019

   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  MPLS Encapsulation Using an SFF Label . . . . . . . . . . . .   3
     2.1.  MPLS Label Stack Construction at the Sending Node . . . .   4
     2.2.  SFF Label Processing at the Destination Node  . . . . . .   5
   3.  Equal Cost Multipath (ECMP) Considerations  . . . . . . . . .   5
   4.  Operations, Administration, and Maintenance (OAM)
       Considerations  . . . . . . . . . . . . . . . . . . . . . . .   6
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   7
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   7
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   As discussed in [RFC8300], a number of transport encapsulations for
   the Service Function Chaining (SFC) Network Service Header (NSH)
   already exist, such as Ethernet, UDP, GRE, and others.

   This document describes an MPLS transport encapsulation for the NSH
   and how to use a Service Function Forwarder (SFF) [RFC7665] Label to
   indicate the presence of the NSH in the MPLS packet payload.  This
   allows SFC packets using the NSH to be forwarded between SFFs in an
   MPLS transport network, where MPLS is used to interconnect the
   network nodes that contain one or more SFFs.  The label is also used
   to select between multiple SFFs in the destination MPLS node.

   This encapsulation is equivalent from an SFC perspective to other
   transport encapsulations of packets using the NSH.  This can be
   illustrated by adding an additional line to the example of a next-hop
   SPI/SI-to-network overlay network locator mapping in Table 1 of
   [RFC8300]:

Malis, et al.           Expires September 1, 2019               [Page 2]
Internet-Draft            MPLS for the SFC NSH             February 2019

     +------+------+---------------------+-------------------------+
     | SPI  | SI   | Next Hop(s)         | Transport Encapsulation |
     +------+------+---------------------+-------------------------+
     | 25   | 220  | Label 5467          | MPLS                    |
     +------+------+---------------------+-------------------------+

                 Table 1: Extension to RFC 8300 Table 1

   SFF Labels are similar to other service labels at the bottom of an
   MPLS label stack that denote the contents of the MPLS payload being
   other than a normally routed IP packet, such as a layer 2 pseudowire,
   an IP packet that is routed in a VPN context with a private address,
   or an Ethernet virtual private wire service.

   This informational document follows well-established MPLS procedures
   and does not require any actions by IANA or any new protocol
   extensions.

   Note that using the MPLS label stack as a replacement for the SFC
   NSH, covering use cases that do not require per-packet metadata, is
   described elsewhere [I-D.ietf-mpls-sfc].

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  MPLS Encapsulation Using an SFF Label

   The encapsulation is a standard MPLS label stack [RFC3032] with an
   SFF Label at the bottom of the stack, followed by a NSH as defined by
   [RFC8300] and the NSH original packet/frame.

   Much like a pseudowire label, an SFF Label MUST be allocated by the
   downstream receiver of the NSH from its per-platform label space,
   since the meaning of the label is identical independent of which
   incoming interface it is received [RFC3031].

   If a receiving node supports more than one SFF (i.e., more than one
   SFC forwarding instance), then the SFF Label can be used to select
   the proper SFF, by having the receiving node advertise more than one
   SFF Label to its upstream sending nodes as appropriate.

   The method used by the downstream receiving node to advertise SFF
   Labels to the upstream sending node is out of scope of this document.

Malis, et al.           Expires September 1, 2019               [Page 3]
Internet-Draft            MPLS for the SFC NSH             February 2019

   That said, a number of methods are possible, such as via a protocol
   exchange, or via a controller that manages both the sender and the
   receiver using NETCONF/YANG, BGP, PCEP, etc.  One such BGP-based
   method has already been defined, and is documented in
   [I-D.ietf-bess-nsh-bgp-control-plane].  This does not constrain the
   further definition of other such advertisement methods in the future.

   While the SFF label will usually be at the bottom of the label stack,
   there may be cases where there are additional label stack entries
   beneath it.  For example, when an Associated Channel Header (ACH) is
   carried that applies to the SFF, a Generic Associated Channel Label
   (GAL) [RFC5586] will be in the label stack below the SFF.  Similarly,
   an Entropy Label Indicator/Entropy Label (ELI/EL) [RFC6790] may be
   carried below the SFF in the label stack.  This is identical to the
   situation with VPN labels.

   This document does not define a use for the Traffic Class (TC) field
   [RFC5462] (formerly known as the Experimental Use (EXP) bits
   [RFC3032]) in the SFF Label.

2.1.  MPLS Label Stack Construction at the Sending Node

   When one SFF wishes to send an SFC packet with a NSH to another SFF
   over an MPLS transport network, a label stack needs to be constructed
   by the MPLS node that contains the sending SFF in order to transport
   the packet to the destination MPLS node that contains the receiving
   SFF.  The label stack is constructed as follows:

   1.  Push zero or more labels that are interpreted by the destination
       MPLS node on to the packet, such as the Generic Associated
       Channel [RFC5586] label (see Section 4).  The TTL For these
       labels is set according to the relevant standards that define
       these labels.

   2.  Push the SFF Label to identify the desired SFF in the receiving
       MPLS node.  The TTL For this MPLS label MUST be set to one to
       avoid mis-forwarding.

   3.  Push zero or more additional labels such that (a) the resulting
       label stack will cause the packet to be transported to the
       destination MPLS node, and (b) when the packet arrives at the
       destination node, either:

       *  the SFF Label will be at the top of the label stack (this is
          typically the case when penultimate hop popping is used at the
          penultimate node, or the source and destination nodes are
          direct neighbors), or

Malis, et al.           Expires September 1, 2019               [Page 4]
Internet-Draft            MPLS for the SFC NSH             February 2019

       *  as a part of normal MPLS processing, the SFF Label becomes the
          top label in the stack before the packet is forwarded to
          another node and before the packet is dispatched to a higher
          layer.

      The TTL for these labels is set by configuration, or set to the
      defaults for normal MPLS operation in the network.

2.2.  SFF Label Processing at the Destination Node

   The destination MPLS node performs a lookup on the SFF label to
   retrieve the next-hop context between the SFF and SF, e.g. to
   retrieve the destination MAC address in the case where native
   Ethernet encapsulation is used between SFF and SF.  How the next-hop
   context is populated is out of the scope of this document.

   The receiving SFF SHOULD check that the received SFF label has a TTL
   of 1 upon receipt.  Any other values indicate a likely error
   condition and SHOULD result in discarding the packet.

   The receiving MPLS node then pops the SFF Label (and any labels
   beneath it) so that the destination SFF receives the SFC packet with
   the NSH is at the top of the packet.

3.  Equal Cost Multipath (ECMP) Considerations

   As discussed in [RFC4928] and [RFC7325], there are ECMP
   considerations for payloads carried by MPLS.

   Many existing routers use deep packet inspection to examine the
   payload of an MPLS packet, and if the first nibble of the payload is
   equal to 0x4 or 0x6, these routers (sometimes incorrectly, as
   discussed in [RFC4928]) assume that the payload is IPv4 or IPv6
   respectively, and as a result, perform ECMP load balancing based on
   (presumed) information present in IP/TCP/UDP payload headers or in a
   combination of MPLS label stack and (presumed) IP/TCP/UDP payload
   headers in the packet.

   For SFC, ECMP may or may not be desirable.  To prevent ECMP when it
   is not desired, the NSH Base Header was carefully constructed so that
   the NSH could not look like IPv4 or IPv6 based on its first nibble.
   See Section 2.2 of [RFC8300] for further details.

   If ECMP is desired when SFC is used with an MPLS transport network,
   there are two possible options, Entropy [RFC6790] and Flow-Aware
   Transport [RFC6391] labels.  A recommendation between these options,
   and their proper placement in the label stack, is for future study.

Malis, et al.           Expires September 1, 2019               [Page 5]
Internet-Draft            MPLS for the SFC NSH             February 2019

4.  Operations, Administration, and Maintenance (OAM) Considerations

   OAM at the SFC Layer is handled by SFC-defined mechanisms [RFC8300].
   However, OAM may be required at the MPLS transport layer.  If so,
   then standard MPLS-layer OAM mechanisms may be used at the transport
   label layer (the labels above the SFF label).

5.  IANA Considerations

   This document does not request any actions from IANA.

   Editorial note to RFC Editor: This section may be removed at your
   discretion.

6.  Security Considerations

   This document describes a method for transporting SFC packets using
   the NSH over an MPLS transport network.  It follows well-established
   MPLS procedures in widespread operational use and does not define any
   new protocol elements or allocate any new code points, and is no more
   or less secure than carrying any other protocol over MPLS.  To the
   MPLS network, the NSH and its contents is simply an opaque payload.

   Discussion of the security properties of SFC networks can be found in
   [RFC7665].  Further security discussion regarding the NSH is
   contained in [RFC8300].

   [RFC8300] references a number of transport encapsulations of the NSH,
   including Ethernet, GRE, UDP, and others.  This document simply
   defines one additional transport encapsulation.  The NSH was
   specially constructed to be agnostic to its transport encapsulation.
   As as result, in general this additional encapsulation is no more or
   less secure than carrying the NSH in any other encapsulation.

   However, it can be argued that carrying the NSH over MPLS is more
   secure than using other encapsulations, as it is extremely difficult,
   due to the MPLS architecture, for an attempted attacker to inject
   unexpected MPLS packets into a network, as MPLS networks do not by
   design accept MPLS packets from external interfaces, and an attacker
   would need knowledge of the specific labels allocated by control and/
   or management plane protocols.  Thus, an attacker attempting to spoof
   MPLS-encapsulated NSH packets would require insider knowledge of the
   network's control and management planes and a way to inject packets
   into internal interfaces.  This is compared to, for example, NSH over
   UDP over IP, which could be injected into any external interface in a
   network that was not properly configured to filter out such packets
   at the ingress.

Malis, et al.           Expires September 1, 2019               [Page 6]
Internet-Draft            MPLS for the SFC NSH             February 2019

7.  Acknowledgements

   The authors would like to thank Jim Guichard, Eric Rosen, Med
   Boucadair, Sasha Vainshtein, Jeff Tantsura, Anoop Ghanwani, John
   Drake, Loa Andersson, Carlos Pignataro, and Christian Hopps for their
   reviews and comments.

8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031,
              DOI 10.17487/RFC3031, January 2001,
              <https://www.rfc-editor.org/info/rfc3031>.

   [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
              Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
              <https://www.rfc-editor.org/info/rfc3032>.

   [RFC5462]  Andersson, L. and R. Asati, "Multiprotocol Label Switching
              (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
              Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
              2009, <https://www.rfc-editor.org/info/rfc5462>.

   [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
              Chaining (SFC) Architecture", RFC 7665,
              DOI 10.17487/RFC7665, October 2015,
              <https://www.rfc-editor.org/info/rfc7665>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
              "Network Service Header (NSH)", RFC 8300,
              DOI 10.17487/RFC8300, January 2018,
              <https://www.rfc-editor.org/info/rfc8300>.

Malis, et al.           Expires September 1, 2019               [Page 7]
Internet-Draft            MPLS for the SFC NSH             February 2019

8.2.  Informative References

   [I-D.ietf-bess-nsh-bgp-control-plane]
              Farrel, A., Drake, J., Rosen, E., Uttaro, J., and L.
              Jalil, "BGP Control Plane for NSH SFC", draft-ietf-bess-
              nsh-bgp-control-plane-07 (work in progress), February
              2019.

   [I-D.ietf-mpls-sfc]
              Farrel, A., Bryant, S., and J. Drake, "An MPLS-Based
              Forwarding Plane for Service Function Chaining", draft-
              ietf-mpls-sfc-05 (work in progress), February 2019.

   [RFC4928]  Swallow, G., Bryant, S., and L. Andersson, "Avoiding Equal
              Cost Multipath Treatment in MPLS Networks", BCP 128,
              RFC 4928, DOI 10.17487/RFC4928, June 2007,
              <https://www.rfc-editor.org/info/rfc4928>.

   [RFC5586]  Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed.,
              "MPLS Generic Associated Channel", RFC 5586,
              DOI 10.17487/RFC5586, June 2009,
              <https://www.rfc-editor.org/info/rfc5586>.

   [RFC6391]  Bryant, S., Ed., Filsfils, C., Drafz, U., Kompella, V.,
              Regan, J., and S. Amante, "Flow-Aware Transport of
              Pseudowires over an MPLS Packet Switched Network",
              RFC 6391, DOI 10.17487/RFC6391, November 2011,
              <https://www.rfc-editor.org/info/rfc6391>.

   [RFC6790]  Kompella, K., Drake, J., Amante, S., Henderickx, W., and
              L. Yong, "The Use of Entropy Labels in MPLS Forwarding",
              RFC 6790, DOI 10.17487/RFC6790, November 2012,
              <https://www.rfc-editor.org/info/rfc6790>.

   [RFC7325]  Villamizar, C., Ed., Kompella, K., Amante, S., Malis, A.,
              and C. Pignataro, "MPLS Forwarding Compliance and
              Performance Requirements", RFC 7325, DOI 10.17487/RFC7325,
              August 2014, <https://www.rfc-editor.org/info/rfc7325>.

Authors' Addresses

   Andrew G. Malis
   Huawei Technologies

   Email: agmalis@gmail.com

Malis, et al.           Expires September 1, 2019               [Page 8]
Internet-Draft            MPLS for the SFC NSH             February 2019

   Stewart Bryant
   Huawei Technologies

   Email: stewart.bryant@gmail.com

   Joel M. Halpern
   Ericsson

   Email: joel.halpern@ericsson.com

   Wim Henderickx
   Nokia

   Email: wim.henderickx@nokia.com

Malis, et al.           Expires September 1, 2019               [Page 9]