Skip to main content

LPWAN Overview
draft-ietf-lpwan-overview-04

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 8376.
Author Stephen Farrell
Last updated 2017-06-13
Replaces draft-farrell-lpwan-overview
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 8376 (Informational)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-lpwan-overview-04
Internet Engineering Task Force (IETF)                   J. Winterbottom
Request for Comments: 6753                                     Commscope
Category: Standards Track                                  H. Tschofenig
ISSN: 2070-1721                                   Nokia Siemens Networks
                                                          H. Schulzrinne
                                                     Columbia University
                                                              M. Thomson
                                                               Microsoft
                                                            October 2012

                 A Location Dereference Protocol Using
                 HTTP-Enabled Location Delivery (HELD)

Abstract

   This document describes how to use the Hypertext Transfer Protocol
   (HTTP) over Transport Layer Security (TLS) as a dereference protocol
   to resolve a reference to a Presence Information Data Format Location
   Object (PIDF-LO).  This document assumes that a Location Recipient
   possesses a URI that can be used in conjunction with the HTTP-Enabled
   Location Delivery (HELD) protocol to request the location of the
   Target.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6753.

Winterbottom, et al.         Standards Track                    [Page 1]
RFC 6753                   HELD Dereferencing               October 2012

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
   3.  HELD Dereference Protocol  . . . . . . . . . . . . . . . . . .  4
     3.1.  HELD Usage Profile . . . . . . . . . . . . . . . . . . . .  4
     3.2.  HTTP GET Behavior  . . . . . . . . . . . . . . . . . . . .  5
   4.  Authorization Models . . . . . . . . . . . . . . . . . . . . .  6
     4.1.  Authorization by Possession  . . . . . . . . . . . . . . .  7
     4.2.  Authorization via Access Control . . . . . . . . . . . . .  8
     4.3.  Access Control with HELD Dereference . . . . . . . . . . .  9
   5.  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 13
   7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 14
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 15
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 15
   Appendix A.  GEOPRIV Using Protocol Compliance . . . . . . . . . . 18
   Appendix B.  Compliance to Location Reference Requirements . . . . 21
     B.1.  Requirements for a Location Configuration Protocol . . . . 21
     B.2.  Requirements for a Location Dereference Protocol . . . . . 23

Winterbottom, et al.         Standards Track                    [Page 2]
RFC 6753                   HELD Dereferencing               October 2012

1.  Introduction

   A location URI [RFC5808] identifies a resource that contains the
   location of an entity.  This document specifies how a holder of an
   "http:" or "https:" location URI uses that URI to retrieve location
   information using a subset of HELD functionality or an HTTP GET
   request.

   A location URI can be acquired using a location configuration
   protocol, such as HTTP-Enabled Location Delivery (HELD) [RFC5985] or
   the Dynamic Host Configuration Protocol (DHCP) location URI option
   [DHCP-URI-OPT].

   A Location Recipient that dereferences a location URI acquires
   location information in the form of a Presence Information Data
   Format - Location Object (PIDF-LO) document [RFC4119].  HELD
   parameters allow for specifying the type of location information,
   though some constraints are placed on allowable parameters.

   Location URIs compatible with HELD dereferencing use the "https:" or
   "http:" scheme.  HELD can be used by Location Recipients that are
   aware of the fact that the URI is a location URI.  Mandatory support
   for an HTTP GET request ensures that the URI can be used even if it
   is not recognized as a location URI.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This document uses key terminology from several sources:

   o  The terms for the GEOPRIV reference model defined are in
      [RFC6280].

   o  The term "Location Information Server (LIS)", from [RFC5687], is a
      node in the access network that provides location information to
      an endpoint.  A LIS provides location URIs.

   o  The term "Location Server (LS)", from [RFC6280], is used to
      identify the role that responds to a location dereference request.
      A Location Server might be the same entity as the LIS, but the
      model in [RFC5808] allows for the existence of separate -- but
      related -- entities.

   o  The term "location URI" is coined in [RFC5808].

Winterbottom, et al.         Standards Track                    [Page 3]
RFC 6753                   HELD Dereferencing               October 2012

3.  HELD Dereference Protocol

   This section describes how HELD can be used to dereference a location
   URI.  This process can be applied when a Location Recipient is in
   possession of a location URI with an "https:" or "http:" URI scheme.

   This document does not describe a specific authentication mechanism.
   This means that authorization policies are unable to specifically
   identify authorized Location Recipients.

   A Location Recipient that wishes to dereference an "https:" or
   "http:" URI performs a HELD request on HTTP to the identified
   resource.

      Note: In many cases, an "http:" URI does not provide sufficient
      security for location URIs.  The absence of the security
      mechanisms provided by TLS means that the Rule Maker has no
      control over who receives location information, and the Location
      Recipient has no assurance that the information is correct.

   The Location Recipient establishes a connection to the LS, as
   described in [RFC2818].

   The scheme of a location URI determines whether or not TLS is used on
   a given dereference transaction.  Location Servers MUST be configured
   to issue only HTTPS URIs and respond to only to HTTPS dereference
   requests, unless confidentiality and integrity protection are
   provided by some other mechanism.  For example, the server might only
   accept requests from clients within a trusted network or via an
   IPsec-protected channel.  When TLS is used, the TLS ciphersuite
   TLS_NULL_WITH_NULL_NULL MUST NOT be used, and the LS MUST be
   authenticated [RFC6125] to ensure that the correct server is
   contacted.

   A Location Server MAY reject a request and ask that a Location
   Recipient provide authentication credentials if authorization is
   dependent on the Location Recipient identity.  Future specifications
   could define an authentication mechanism and a means by which
   Location Recipients are identified in authorization policies.  This
   document does not provide definitions for either item.

3.1.  HELD Usage Profile

   Use of HELD as a location dereference protocol is largely the same as
   its use as a location configuration protocol.  Aside from the
   restrictions noted in this document, HELD semantics do not differ
   from those established in [RFC5985].

Winterbottom, et al.         Standards Track                    [Page 4]
RFC 6753                   HELD Dereferencing               October 2012

   The HELD "locationRequest" is the only request permitted by this
   specification.  Similarly, request parameters other than the
   following MUST NOT be accepted by the LS: "responseTime" and
   "locationType" (including the associated "exact" attribute).

   Parameters and requests that do not have known behavior for
   dereference requests MUST NOT be used.  The LS MUST ignore any
   parameters that it does not understand unless it knows the parameters
   to be invalid.  If parameters are understood by the LS and known to
   be invalid, the LS MAY generate a HELD error response.  For instance,
   those defined in [RFC6155] are always invalid and can be rejected.

   The LS MUST NOT generate location URIs or provide a "locationUriSet"
   in response to a dereference request.  If the location request
   contains a "locationType" element that includes "locationURI", this
   parameter is either ignored or rejected as appropriate, based on the
   associated "exact" attribute.

3.2.  HTTP GET Behavior

   GET is the method assumed by generic HTTP user agents; therefore,
   unless context identifies an "https:" URI as a HELD URI, such a user
   agent might simply send an HTTP GET.  Rather than providing an HTTP
   405 (Method Not Allowed) response indicating that POST is the only
   permitted method, a LIS MUST provide a HELD location response if it
   receives an HTTP GET request.

   An HTTP GET request to a HELD URI produces a HELD response as if the
   following HELD request had been sent using HTTP POST:

     <locationRequest xmlns="urn:ietf:params:xml:ns:geopriv:held">
       <locationType exact="false">
         geodetic civic
       </locationType>
     </locationRequest>

             Figure 1: GET Request Equivalent Location Request

   HTTP GET requests MUST be safe and idempotent [RFC2616] -- that is,
   there are no side effects of making the request, and a repeated
   request has no more effect than a single request.  Repeating a HELD
   request might result in a different location, but only as a result of
   a change in the state of the resource: the location of the Target.

   Only the creation of a location URI as a result of receiving a
   request causes a HELD request to have side effects.  A request to a
   location URI can be both safe and idempotent, since a location URI
   cannot be produced in response to a request to a location URI.  A

Winterbottom, et al.         Standards Track                    [Page 5]
Internet-Draft   Low Power Wide Area Networking Overview       June 2017

   [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
              Control Message Protocol (ICMPv6) for the Internet
              Protocol Version 6 (IPv6) Specification", RFC 4443,
              DOI 10.17487/RFC4443, March 2006,
              <http://www.rfc-editor.org/info/rfc4443>.

   [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
              "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
              DOI 10.17487/RFC4861, September 2007,
              <http://www.rfc-editor.org/info/rfc4861>.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
              <http://www.rfc-editor.org/info/rfc4944>.

   [RFC5216]  Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
              Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
              March 2008, <http://www.rfc-editor.org/info/rfc5216>.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <http://www.rfc-editor.org/info/rfc5246>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <http://www.rfc-editor.org/info/rfc5280>.

   [RFC6282]  Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
              Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
              DOI 10.17487/RFC6282, September 2011,
              <http://www.rfc-editor.org/info/rfc6282>.

   [RFC6775]  Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
              Bormann, "Neighbor Discovery Optimization for IPv6 over
              Low-Power Wireless Personal Area Networks (6LoWPANs)",
              RFC 6775, DOI 10.17487/RFC6775, November 2012,
              <http://www.rfc-editor.org/info/rfc6775>.

   [RFC6961]  Pettersen, Y., "The Transport Layer Security (TLS)
              Multiple Certificate Status Request Extension", RFC 6961,
              DOI 10.17487/RFC6961, June 2013,
              <http://www.rfc-editor.org/info/rfc6961>.

Farrell                 Expires December 15, 2017              [Page 36]
Internet-Draft   Low Power Wide Area Networking Overview       June 2017

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <http://www.rfc-editor.org/info/rfc7252>.

   [RFC7668]  Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
              Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
              Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,
              <http://www.rfc-editor.org/info/rfc7668>.

   [I-D.farrell-lpwan-lora-overview]
              Farrell, S. and A. Yegin, "LoRaWAN Overview", draft-
              farrell-lpwan-lora-overview-01 (work in progress), October
              2016.

   [I-D.minaburo-lpwan-gap-analysis]
              Minaburo, A., Gomez, C., Toutain, L., Paradells, J., and
              J. Crowcroft, "LPWAN Survey and GAP Analysis", draft-
              minaburo-lpwan-gap-analysis-02 (work in progress), October
              2016.

   [I-D.zuniga-lpwan-sigfox-system-description]
              Zuniga, J. and B. PONSARD, "SIGFOX System Description",
              draft-zuniga-lpwan-sigfox-system-description-02 (work in
              progress), March 2017.

   [I-D.ratilainen-lpwan-nb-iot]
              Ratilainen, A., "NB-IoT characteristics", draft-
              ratilainen-lpwan-nb-iot-00 (work in progress), July 2016.

   [I-D.garcia-dime-diameter-lorawan]
              Garcia, D., Lopez, R., Kandasamy, A., and A. Pelov,
              "LoRaWAN Authentication in Diameter", draft-garcia-dime-
              diameter-lorawan-00 (work in progress), May 2016.

   [I-D.garcia-radext-radius-lorawan]
              Garcia, D., Lopez, R., Kandasamy, A., and A. Pelov,
              "LoRaWAN Authentication in RADIUS", draft-garcia-radext-
              radius-lorawan-03 (work in progress), May 2017.

   [TGPP36300]
              3GPP, "TS 36.300 v13.4.0 Evolved Universal Terrestrial
              Radio Access (E-UTRA) and Evolved Universal Terrestrial
              Radio Access Network (E-UTRAN); Overall description; Stage
              2", 2016,
              <http://www.3gpp.org/ftp/Specs/2016-09/Rel-14/36_series/>.

Farrell                 Expires December 15, 2017              [Page 37]
Internet-Draft   Low Power Wide Area Networking Overview       June 2017

   [TGPP36321]
              3GPP, "TS 36.321 v13.2.0 Evolved Universal Terrestrial
              Radio Access (E-UTRA); Medium Access Control (MAC)
              protocol specification", 2016.

   [TGPP36322]
              3GPP, "TS 36.322 v13.2.0 Evolved Universal Terrestrial
              Radio Access (E-UTRA); Radio Link Control (RLC) protocol
              specification", 2016.

   [TGPP36323]
              3GPP, "TS 36.323 v13.2.0 Evolved Universal Terrestrial
              Radio Access (E-UTRA); Packet Data Convergence Protocol
              (PDCP) specification (Not yet available)", 2016.

   [TGPP36331]
              3GPP, "TS 36.331 v13.2.0 Evolved Universal Terrestrial
              Radio Access (E-UTRA); Radio Resource Control (RRC);
              Protocol specification", 2016.

   [TGPP36201]
              3GPP, "TS 36.201 v13.2.0 - Evolved Universal Terrestrial
              Radio Access (E-UTRA); LTE physical layer; General
              description", 2016.

   [TGPP23720]
              3GPP, "TR 23.720 v13.0.0 - Study on architecture
              enhancements for Cellular Internet of Things", 2016.

   [TGPP33203]
              3GPP, "TS 33.203 v13.1.0 - 3G security; Access security
              for IP-based services", 2016.

   [fcc_ref]  "FCC CFR 47 Part 15.247 Telecommunication Radio Frequency
              Devices - Operation within the bands 902-928 MHz,
              2400-2483.5 MHz, and 5725-5850 MHz.", June 2016.

   [etsi_ref]
              "ETSI EN 300-220 (Parts 1 and 2): Electromagnetic
              compatibility and Radio spectrum Matters (ERM); Short
              Range Devices (SRD); Radio equipment to be used in the 25
              MHz to 1 000 MHz frequency range with power levels ranging
              up to 500 mW", May 2016.

   [arib_ref]
              "ARIB STD-T108 (Version 1.0): 920MHz-Band Telemeter,
              Telecontrol and data transmission radio equipment.",
              February 2012.

Farrell                 Expires December 15, 2017              [Page 38]
Internet-Draft   Low Power Wide Area Networking Overview       June 2017

   [LoRaSpec]
              LoRa Alliance, "LoRaWAN Specification Version V1.0.2",
              July 2016, <http://portal.lora-
              alliance.org/DesktopModules/Inventures_Document/
              FileDownload.aspx?ContentID=1398>.

   [LoRaSpec1.0]
              LoRa Alliance, "LoRaWAN Specification Version V1.0", Jan
              2015, <https://www.lora-alliance.org/portals/0/specs/
              LoRaWAN%20Specification%201R0.pdf>.

   [ANSI-4957-000]
              ANSI, TIA-4957.000, "Architecture Overview for the Smart
              Utility Network", May 2013, <https://global.ihs.com/
              doc_detail.cfm?%26rid=TIA%26item_s_key=00606368>.

   [ANSI-4957-210]
              ANSI, TIA-4957.210, "Multi-Hop Delivery Specification of a
              Data Link Sub-Layer", May 2013, <https://global.ihs.com/
              doc_detail.cfm?%26csf=TIA%26item_s_key=00601800>.

   [wisun-pressie1]
              Phil Beecher, Chair, Wi-SUN Alliance, "Wi-SUN Alliance
              Overview", March 2017, <http://indiasmartgrid.org/event201
              7/10-03-2017/4.%20Roundtable%20on%20Communication%20and%20
              Cyber%20Security/1.%20Phil%20Beecher.pdf>.

   [wisun-pressie2]
              Bob Heile, Director of Standards, Wi-SUN Alliance, "IETF97
              Wi-SUN Alliance Field Area Network (FAN) Overview",
              November 2016,
              <https://www.ietf.org/proceedings/97/slides/slides-97-
              lpwan-35-wi-sun-presentation-00.pdf>.

   [IEEE-802-15-4]
              "IEEE Standard for Low-Rate Wireless Personal Area
              Networks (WPANs)", IEEE Standard 802.15.4, 2015,
              <https://standards.ieee.org/findstds/
              standard/802.15.4-2015.html>.

   [IEEE-802-15-9]
              "IEEE Recommended Practice for Transport of Key Management
              Protocol (KMP) Datagrams", IEEE Standard 802.15.9, 2016,
              <https://standards.ieee.org/findstds/
              standard/802.15.9-2016.html>.

Farrell                 Expires December 15, 2017              [Page 39]
Internet-Draft   Low Power Wide Area Networking Overview       June 2017

   [etsi_unb]
              "ETSI TR 103 435 System Reference document (SRdoc); Short
              Range Devices (SRD); Technical characteristics for Ultra
              Narrow Band (UNB) SRDs operating in the UHF spectrum below
              1 GHz", February 2017.

Appendix A.  Changes

A.1.  From -00 to -01

   o  WG have stated they want this to be an RFC.

   o  WG clearly want to keep the RF details.

   o  Various changes made to remove/resolve a number of editorial notes
      from -00 (in some cases as per suggestions from Ana Minaburo)

   o  Merged PR's: #1...

   o  Rejected PR's: #2 (change was made to .txt not .xml but was
      replicated manually by editor)

   o  Github repo is at: https://github.com/sftcd/lpwan-ov

A.2.  From -01 to -02

   o  WG seem to agree with editor suggestions in slides 13-24 of the
      presentation on this topic given at IETF98 (See:
      https://www.ietf.org/proceedings/98/slides/slides-98-lpwan-
      aggregated-slides-07.pdf)

   o  Got new text wrt Wi-SUN via email from Paul Duffy and merged that
      in

   o  Reflected list discussion wrt terminology and "end-device"

   o  Merged PR's: #3...

A.3.  From -02 to -03

   o  Editorial changes and typo fixes thanks to Fred Baker running
      something called Grammerly and sending me it's report.

   o  Merged PR's: #4, #6, #7...

   o  Editor did an editing pass on the lot.

Farrell                 Expires December 15, 2017              [Page 40]
Internet-Draft   Low Power Wide Area Networking Overview       June 2017

A.4.  From -03 to -04

   o  Picked up a PR that had been wrongly applied that expands UE

   o  Editorial changes wrt LoRa suggested by Alper

   o  Editorial changes wrt SIGFOX provided by Juan-Carlos

Author's Address

   Stephen Farrell (editor)
   Trinity College Dublin
   Dublin  2
   Ireland

   Phone: +353-1-896-2354
   Email: stephen.farrell@cs.tcd.ie

Farrell                 Expires December 15, 2017              [Page 41]
RFC 6753                   HELD Dereferencing               October 2012