Skip to main content

JSON Web Signature (JWS)
draft-ietf-jose-json-web-signature-02

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7515.
Authors Michael B. Jones , John Bradley , Nat Sakimura
Last updated 2012-05-12
Replaces draft-jones-json-web-signature
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 7515 (Proposed Standard)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-jose-json-web-signature-02
JOSE Working Group                                              M. Jones
Internet-Draft                                                 Microsoft
Intended status: Standards Track                              J. Bradley
Expires: November 13, 2012                                 Ping Identity
                                                             N. Sakimura
                                                                     NRI
                                                            May 12, 2012

                        JSON Web Signature (JWS)
                 draft-ietf-jose-json-web-signature-02

Abstract

   JSON Web Signature (JWS) is a means of representing content secured
   with digital signatures or Message Authentication Codes (MACs) using
   JSON data structures.  Cryptographic algorithms and identifiers used
   with this specification are enumerated in the separate JSON Web
   Algorithms (JWA) specification.  Related encryption capabilities are
   described in the separate JSON Web Encryption (JWE) specification.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 13, 2012.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Jones, et al.           Expires November 13, 2012               [Page 1]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
   2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
   3.  JSON Web Signature (JWS) Overview  . . . . . . . . . . . . . .  5
     3.1.  Example JWS  . . . . . . . . . . . . . . . . . . . . . . .  5
   4.  JWS Header . . . . . . . . . . . . . . . . . . . . . . . . . .  6
     4.1.  Reserved Header Parameter Names  . . . . . . . . . . . . .  7
       4.1.1.  "alg" (Algorithm) Header Parameter . . . . . . . . . .  7
       4.1.2.  "jku" (JWK Set URL) Header Parameter . . . . . . . . .  7
       4.1.3.  "jwk" (JSON Web Key) Header Parameter  . . . . . . . .  7
       4.1.4.  "x5u" (X.509 URL) Header Parameter . . . . . . . . . .  8
       4.1.5.  "x5t" (X.509 Certificate Thumbprint) Header
               Parameter  . . . . . . . . . . . . . . . . . . . . . .  8
       4.1.6.  "x5c" (X.509 Certificate Chain) Header Parameter . . .  8
       4.1.7.  "kid" (Key ID) Header Parameter  . . . . . . . . . . .  9
       4.1.8.  "typ" (Type) Header Parameter  . . . . . . . . . . . .  9
     4.2.  Public Header Parameter Names  . . . . . . . . . . . . . .  9
     4.3.  Private Header Parameter Names . . . . . . . . . . . . . .  9
   5.  Rules for Creating and Validating a JWS  . . . . . . . . . . . 10
   6.  Securing JWSs with Cryptographic Algorithms  . . . . . . . . . 12
   7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 12
     7.1.  Registration of application/jws MIME Media Type  . . . . . 12
     7.2.  Registration of "JWS" Type Value . . . . . . . . . . . . . 13
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 14
     8.1.  Cryptographic Security Considerations  . . . . . . . . . . 14
     8.2.  JSON Security Considerations . . . . . . . . . . . . . . . 14
     8.3.  Unicode Comparison Security Considerations . . . . . . . . 15
   9.  Open Issues and Things To Be Done (TBD)  . . . . . . . . . . . 15
   10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
     10.1. Normative References . . . . . . . . . . . . . . . . . . . 15
     10.2. Informative References . . . . . . . . . . . . . . . . . . 16
   Appendix A.  JWS Examples  . . . . . . . . . . . . . . . . . . . . 17
     A.1.  JWS using HMAC SHA-256 . . . . . . . . . . . . . . . . . . 17
       A.1.1.  Encoding . . . . . . . . . . . . . . . . . . . . . . . 17
       A.1.2.  Decoding . . . . . . . . . . . . . . . . . . . . . . . 19
       A.1.3.  Validating . . . . . . . . . . . . . . . . . . . . . . 19

Jones, et al.           Expires November 13, 2012               [Page 2]
Internet-Draft          JSON Web Signature (JWS)                May 2012

     A.2.  JWS using RSA SHA-256  . . . . . . . . . . . . . . . . . . 19
       A.2.1.  Encoding . . . . . . . . . . . . . . . . . . . . . . . 19
       A.2.2.  Decoding . . . . . . . . . . . . . . . . . . . . . . . 23
       A.2.3.  Validating . . . . . . . . . . . . . . . . . . . . . . 23
     A.3.  JWS using ECDSA P-256 SHA-256  . . . . . . . . . . . . . . 24
       A.3.1.  Encoding . . . . . . . . . . . . . . . . . . . . . . . 24
       A.3.2.  Decoding . . . . . . . . . . . . . . . . . . . . . . . 26
       A.3.3.  Validating . . . . . . . . . . . . . . . . . . . . . . 26
     A.4.  Example Plaintext JWS  . . . . . . . . . . . . . . . . . . 26
   Appendix B.  Notes on implementing base64url encoding without
                padding . . . . . . . . . . . . . . . . . . . . . . . 27
   Appendix C.  Acknowledgements  . . . . . . . . . . . . . . . . . . 28
   Appendix D.  Document History  . . . . . . . . . . . . . . . . . . 28
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 30

Jones, et al.           Expires November 13, 2012               [Page 3]
Internet-Draft          JSON Web Signature (JWS)                May 2012

1.  Introduction

   JSON Web Signature (JWS) is a compact format for representing content
   secured with digital signatures or Message Authentication Codes
   (MACs) intended for space constrained environments such as HTTP
   Authorization headers and URI query parameters.  It represents this
   content using JSON [RFC4627] data structures.  The JWS digital
   signature and MAC mechanisms are independent of the type of content
   being secured, allowing arbitrary content to be secured.
   Cryptographic algorithms and identifiers used with this specification
   are enumerated in the separate JSON Web Algorithms (JWA) [JWA]
   specification.  Related encryption capabilities are described in the
   separate JSON Web Encryption (JWE) [JWE] specification.

2.  Terminology

   JSON Web Signature (JWS)  A data structure cryptographically securing
      a JWS Header and a JWS Payload with a JWS Signature value.

   JWS Header  A string representing a JSON object that describes the
      digital signature or MAC operation applied to create the JWS
      Signature value.

   JWS Payload  The bytes to be secured - a.k.a., the message.  The
      payload can contain an arbitrary sequence of bytes.

   JWS Signature  A byte array containing the cryptographic material
      that secures the contents of the JWS Header and the JWS Payload.

   Encoded JWS Header  Base64url encoding of the bytes of the UTF-8 RFC
      3629 [RFC3629] representation of the JWS Header.

   Encoded JWS Payload  Base64url encoding of the JWS Payload.

   Encoded JWS Signature  Base64url encoding of the JWS Signature.

   JWS Secured Input  The concatenation of the Encoded JWS Header, a
      period ('.') character, and the Encoded JWS Payload.

   Header Parameter Names  The names of the members within the JSON
      object represented in a JWS Header.

   Header Parameter Values  The values of the members within the JSON
      object represented in a JWS Header.

Jones, et al.           Expires November 13, 2012               [Page 4]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   JWS Compact Serialization  A representation of the JWS as the
      concatenation of the Encoded JWS Header, the Encoded JWS Payload,
      and the Encoded JWS Signature in that order, with the three
      strings being separated by period ('.') characters.

   Base64url Encoding  For the purposes of this specification, this term
      always refers to the URL- and filename-safe Base64 encoding
      described in RFC 4648 [RFC4648], Section 5, with the (non URL-
      safe) '=' padding characters omitted, as permitted by Section 3.2.
      (See Appendix B for notes on implementing base64url encoding
      without padding.)

   StringOrURI  A JSON string value, with the additional requirement
      that while arbitrary string values MAY be used, any value
      containing a ":" character MUST be a URI as defined in RFC 3986
      [RFC3986].

3.  JSON Web Signature (JWS) Overview

   JWS represents digitally signed or MACed content using JSON data
   structures and base64url encoding.  The representation consists of
   three parts: the JWS Header, the JWS Payload, and the JWS Signature.
   In the Compact Serialization, the three parts are base64url-encoded
   for transmission, and represented as the concatenation of the encoded
   strings in that order, with the three strings being separated by
   period ('.') characters.  (A JSON Serialization for this information
   is defined in the separate JSON Web Signature JSON Serialization
   (JWS-JS) [JWS-JS] specification.)

   The JWS Header describes the signature or MAC method and parameters
   employed.  The JWS Payload is the message content to be secured.  The
   JWS Signature ensures the integrity of both the JWS Header and the
   JWS Payload.

3.1.  Example JWS

   The following example JWS Header declares that the encoded object is
   a JSON Web Token (JWT) [JWT] and the JWS Header and the JWS Payload
   are secured using the HMAC SHA-256 algorithm:
   {"typ":"JWT",
    "alg":"HS256"}

   Base64url encoding the bytes of the UTF-8 representation of the JWS
   Header yields this Encoded JWS Header value:
   eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

   The following is an example of a JSON object that can be used as a

Jones, et al.           Expires November 13, 2012               [Page 5]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   JWS Payload.  (Note that the payload can be any content, and need not
   be a representation of a JSON object.)
   {"iss":"joe",
    "exp":1300819380,
    "http://example.com/is_root":true}

   Base64url encoding the bytes of the UTF-8 representation of the JSON
   object yields the following Encoded JWS Payload (with line breaks for
   display purposes only):
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

   Computing the HMAC of the bytes of the UTF-8 representation of the
   JWS Secured Input (the concatenation of the Encoded JWS Header, a
   period ('.') character, and the Encoded JWS Payload) (which is the
   same as the ASCII representation) with the HMAC SHA-256 algorithm
   using the key specified in Appendix A.1 and base64url encoding the
   result yields this Encoded JWS Signature value:
   dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

   Concatenating these parts in the order Header.Payload.Signature with
   period characters between the parts yields this complete JWS
   representation (with line breaks for display purposes only):
   eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
   .
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
   .
   dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

   This computation is illustrated in more detail in Appendix A.1.

4.  JWS Header

   The members of the JSON object represented by the JWS Header describe
   the digital signature or MAC applied to the Encoded JWS Header and
   the Encoded JWS Payload and optionally additional properties of the
   JWS.  The Header Parameter Names within this object MUST be unique;
   JWSs with duplicate Header Parameter Names MUST be rejected.
   Implementations MUST understand the entire contents of the header;
   otherwise, the JWS MUST be rejected.

   There are three classes of Header Parameter Names: Reserved Header
   Parameter Names, Public Header Parameter Names, and Private Header
   Parameter Names.

Jones, et al.           Expires November 13, 2012               [Page 6]
Internet-Draft          JSON Web Signature (JWS)                May 2012

4.1.  Reserved Header Parameter Names

   The following header parameter names are reserved with meanings as
   defined below.  All the names are short because a core goal of JWSs
   is for the representations to be compact.

   Additional reserved header parameter names MAY be defined via the
   IANA JSON Web Signature and Encryption Header Parameters registry
   [JWA].  As indicated by the common registry, JWSs and JWEs share a
   common header parameter space; when a parameter is used by both
   specifications, its usage must be compatible between the
   specifications.

4.1.1.  "alg" (Algorithm) Header Parameter

   The "alg" (algorithm) header parameter identifies the cryptographic
   algorithm used to secure the JWS.  A list of defined "alg" values for
   use with JWS is presented in Section 3.1 of the JSON Web Algorithms
   (JWA) [JWA] specification.  The processing of the "alg" header
   parameter requires that the value MUST be one that is both supported
   and for which there exists a key for use with that algorithm
   associated with the party that digitally signed or MACed the content.
   The "alg" value is case sensitive.  Its value MUST be a string
   containing a StringOrURI value.  This header parameter is REQUIRED.

   "alg" values SHOULD either be defined in the IANA JSON Web Signature
   and Encryption Algorithms registry [JWA] or be a URI that contains a
   collision resistant namespace.

4.1.2.  "jku" (JWK Set URL) Header Parameter

   The "jku" (JWK Set URL) header parameter is an absolute URL that
   refers to a resource for a set of JSON-encoded public keys, one of
   which corresponds to the key used to digitally sign the JWS.  The
   keys MUST be encoded as a JSON Web Key Set (JWK Set) as defined in
   the JSON Web Key (JWK) [JWK] specification.  The protocol used to
   acquire the resource MUST provide integrity protection; an HTTP GET
   request to retrieve the certificate MUST use TLS RFC 2818 [RFC2818]
   RFC 5246 [RFC5246]; the identity of the server MUST be validated, as
   per Section 3.1 of HTTP Over TLS [RFC2818].  This header parameter is
   OPTIONAL.

4.1.3.  "jwk" (JSON Web Key) Header Parameter

   The "jwk" (JSON Web Key) header parameter is a public key that
   corresponds to the key used to digitally sign the JWS.  This key is
   represented as a JSON Web Key [JWK].  This header parameter is
   OPTIONAL.

Jones, et al.           Expires November 13, 2012               [Page 7]
Internet-Draft          JSON Web Signature (JWS)                May 2012

4.1.4.  "x5u" (X.509 URL) Header Parameter

   The "x5u" (X.509 URL) header parameter is an absolute URL that refers
   to a resource for the X.509 public key certificate or certificate
   chain corresponding to the key used to digitally sign the JWS.  The
   identified resource MUST provide a representation of the certificate
   or certificate chain that conforms to RFC 5280 [RFC5280] in PEM
   encoded form RFC 1421 [RFC1421].  The certificate containing the
   public key of the entity that digitally signed the JWS MUST be the
   first certificate.  This MAY be followed by additional certificates,
   with each subsequent certificate being the one used to certify the
   previous one.  The protocol used to acquire the resource MUST provide
   integrity protection; an HTTP GET request to retrieve the certificate
   MUST use TLS RFC 2818 [RFC2818] RFC 5246 [RFC5246]; the identity of
   the server MUST be validated, as per Section 3.1 of HTTP Over TLS
   [RFC2818].  This header parameter is OPTIONAL.

4.1.5.  "x5t" (X.509 Certificate Thumbprint) Header Parameter

   The "x5t" (X.509 Certificate Thumbprint) header parameter provides a
   base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
   encoding of the X.509 certificate corresponding to the key used to
   digitally sign the JWS.  This header parameter is OPTIONAL.

   If, in the future, certificate thumbprints need to be computed using
   hash functions other than SHA-1, it is suggested that additional
   related header parameters be defined for that purpose.  For example,
   it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint
   using SHA-256) header parameter could be defined by registering it in
   the IANA JSON Web Signature and Encryption Header Parameters registry
   [JWA].

4.1.6.  "x5c" (X.509 Certificate Chain) Header Parameter

   The "x5c" (X.509 Certificate Chain) header parameter contains the
   X.509 public key certificate or certificate chain corresponding to
   the key used to digitally sign the JWS.  The certificate or
   certificate chain is represented as an array of certificate values.
   Each value is a base64-encoded (not base64url encoded) DER/BER PKIX
   certificate value.  The certificate containing the public key of the
   entity that digitally signed the JWS MUST be the first certificate.
   This MAY be followed by additional certificates, with each subsequent
   certificate being the one used to certify the previous one.  The
   recipient MUST verify the certificate chain according to [RFC5280]
   and reject the JWS if any validation failure occurs.  This header
   parameter is OPTIONAL.

Jones, et al.           Expires November 13, 2012               [Page 8]
Internet-Draft          JSON Web Signature (JWS)                May 2012

4.1.7.  "kid" (Key ID) Header Parameter

   The "kid" (key ID) header parameter is a hint indicating which key
   was used to secure the JWS.  This allows originators to explicitly
   signal a change of key to recipients.  Should the recipient be unable
   to locate a key corresponding to the "kid" value, they SHOULD treat
   that condition as an error.  The interpretation of the contents of
   the "kid" parameter is unspecified.  Its value MUST be a string.
   This header parameter is OPTIONAL.

4.1.8.  "typ" (Type) Header Parameter

   The "typ" (type) header parameter is used to declare the type of the
   secured content.  The type value "JWS" MAY be used to indicate that
   the secured content is a JWS.  The "typ" value is case sensitive.
   Its value MUST be a string.  This header parameter is OPTIONAL.

   MIME Media Type RFC 2045 [RFC2045] values MAY be used as "typ"
   values.

   "typ" values SHOULD either be defined in the IANA JSON Web Signature
   and Encryption "typ" Values registry [JWA] or be a URI that contains
   a collision resistant namespace.

4.2.  Public Header Parameter Names

   Additional header parameter names can be defined by those using JWSs.
   However, in order to prevent collisions, any new header parameter
   name SHOULD either be defined in the IANA JSON Web Signature and
   Encryption Header Parameters registry [JWA] or be a URI that contains
   a collision resistant namespace.  In each case, the definer of the
   name or value needs to take reasonable precautions to make sure they
   are in control of the part of the namespace they use to define the
   header parameter name.

   New header parameters should be introduced sparingly, as they can
   result in non-interoperable JWSs.

4.3.  Private Header Parameter Names

   A producer and consumer of a JWS may agree to any header parameter
   name that is not a Reserved Name Section 4.1 or a Public Name
   Section 4.2.  Unlike Public Names, these private names are subject to
   collision and should be used with caution.

Jones, et al.           Expires November 13, 2012               [Page 9]
Internet-Draft          JSON Web Signature (JWS)                May 2012

5.  Rules for Creating and Validating a JWS

   To create a JWS, one MUST perform these steps.  The order of the
   steps is not significant in cases where there are no dependencies
   between the inputs and outputs of the steps.

   1.  Create the content to be used as the JWS Payload.

   2.  Base64url encode the bytes of the JWS Payload.  This encoding
       becomes the Encoded JWS Payload.

   3.  Create a JWS Header containing the desired set of header
       parameters.  Note that white space is explicitly allowed in the
       representation and no canonicalization need be performed before
       encoding.

   4.  Base64url encode the bytes of the UTF-8 representation of the JWS
       Header to create the Encoded JWS Header.

   5.  Compute the JWS Signature in the manner defined for the
       particular algorithm being used.  The JWS Secured Input is always
       the concatenation of the Encoded JWS Header, a period ('.')
       character, and the Encoded JWS Payload.  The "alg" (algorithm)
       header parameter MUST be present in the JSON Header, with the
       algorithm value accurately representing the algorithm used to
       construct the JWS Signature.

   6.  Base64url encode the representation of the JWS Signature to
       create the Encoded JWS Signature.

   7.  The three encoded parts, taken together, are the result.  The
       Compact Serialization of this result is the concatenation of the
       Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS
       Signature in that order, with the three strings being separated
       by period ('.') characters.

   When validating a JWS, the following steps MUST be taken.  The order
   of the steps is not significant in cases where there are no
   dependencies between the inputs and outputs of the steps.  If any of
   the listed steps fails, then the JWS MUST be rejected.

   1.  Parse the three parts of the input (which are separated by period
       characters when using the JWS Compact Serialization) into the
       Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS
       Signature.

   2.  The Encoded JWS Header MUST be successfully base64url decoded
       following the restriction given in this specification that no

Jones, et al.           Expires November 13, 2012              [Page 10]
Internet-Draft          JSON Web Signature (JWS)                May 2012

       padding characters have been used.

   3.  The resulting JWS Header MUST be completely valid JSON syntax
       conforming to RFC 4627 [RFC4627].

   4.  The resulting JWS Header MUST be validated to only include
       parameters and values whose syntax and semantics are both
       understood and supported.

   5.  The Encoded JWS Payload MUST be successfully base64url decoded
       following the restriction given in this specification that no
       padding characters have been used.

   6.  The Encoded JWS Signature MUST be successfully base64url decoded
       following the restriction given in this specification that no
       padding characters have been used.

   7.  The JWS Signature MUST be successfully validated against the JWS
       Secured Input (the concatenation of the Encoded JWS Header, a
       period ('.') character, and the Encoded JWS Payload) in the
       manner defined for the algorithm being used, which MUST be
       accurately represented by the value of the "alg" (algorithm)
       header parameter, which MUST be present.

   Processing a JWS inevitably requires comparing known strings to
   values in the header.  For example, in checking what the algorithm
   is, the Unicode string encoding "alg" will be checked against the
   member names in the JWS Header to see if there is a matching header
   parameter name.  A similar process occurs when determining if the
   value of the "alg" header parameter represents a supported algorithm.

   Comparisons between JSON strings and other Unicode strings MUST be
   performed as specified below:

   1.  Remove any JSON applied escaping to produce an array of Unicode
       code points.

   2.  Unicode Normalization [USA15] MUST NOT be applied at any point to
       either the JSON string or to the string it is to be compared
       against.

   3.  Comparisons between the two strings MUST be performed as a
       Unicode code point to code point equality comparison.

Jones, et al.           Expires November 13, 2012              [Page 11]
Internet-Draft          JSON Web Signature (JWS)                May 2012

6.  Securing JWSs with Cryptographic Algorithms

   JWS uses cryptographic algorithms to digitally sign or MAC the
   contents of the JWS Header and the JWS Payload.  The JSON Web
   Algorithms (JWA) [JWA] specification enumerates a set of
   cryptographic algorithms and identifiers to be used with this
   specification.  Specifically, Section 3.1 enumerates a set of "alg"
   (algorithm) header parameter values intended for use this
   specification.  It also describes the semantics and operations that
   are specific to these algorithms and algorithm families.

   Public keys employed for digital signing can be identified using the
   Header Parameter methods described in Section 4.1 or can be
   distributed using methods that are outside the scope of this
   specification.

7.  IANA Considerations

7.1.  Registration of application/jws MIME Media Type

   This specification registers the "application/jws" MIME Media Type
   RFC 2045 [RFC2045].

   Type name:
      application

   Subtype name:
      jws

   Required parameters:
      n/a

   Optional parameters:
      n/a

   Encoding considerations:
      n/a

   Security considerations:
      See the Security Considerations section of this document

   Interoperability considerations:
      n/a

Jones, et al.           Expires November 13, 2012              [Page 12]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   Published specification:
      [[ this document ]]

   Applications that use this media type:
      OpenID Connect

   Additional information:
      Magic number(s): n/a
      File extension(s): n/a
      Macintosh file type code(s): n/a

   Person & email address to contact for further information:
      Michael B. Jones
      mbj@microsoft.com

   Intended usage:
      COMMON

   Restrictions on usage:
      none

   Author:
      Michael B. Jones
      mbj@microsoft.com

   Change controller:
      IETF

7.2.  Registration of "JWS" Type Value

   This specification registers the following "typ" header parameter
   value in the JSON Web Signature and Encryption "typ" Values registry
   established by the JSON Web Algorithms (JWA) [JWA] specification:

   "typ" header parameter value:
      "JWS"

   Abbreviation for MIME type:
      application/jws

   Change controller:
      IETF

   Description:
      [[ this document ]]

Jones, et al.           Expires November 13, 2012              [Page 13]
Internet-Draft          JSON Web Signature (JWS)                May 2012

8.  Security Considerations

8.1.  Cryptographic Security Considerations

   All the security considerations in XML DSIG 2.0
   [W3C.CR-xmldsig-core2-20120124], also apply to this specification,
   other than those that are XML specific.  Likewise, many of the best
   practices documented in XML Signature Best Practices
   [W3C.WD-xmldsig-bestpractices-20110809] also apply to this
   specification, other than those that are XML specific.

   Keys are only as strong as the amount of entropy used to generate
   them.  A minimum of 128 bits of entropy should be used for all keys,
   and depending upon the application context, more may be required.

   When utilizing TLS to retrieve information, the authority providing
   the resource MUST be authenticated and the information retrieved MUST
   be free from modification.

   When cryptographic algorithms are implemented in such a way that
   successful operations take a different amount of time than
   unsuccessful operations, attackers may be able to use the time
   difference to obtain information about the keys employed.  Therefore,
   such timing differences must be avoided.

   TBD: We need to also put in text about: Importance of keeping secrets
   secret.  Rotating keys.  Strengths and weaknesses of the different
   algorithms.

   TBD: Write security considerations about the implications of using a
   SHA-1 hash (for compatibility reasons) for the "x5t" (x.509
   certificate thumbprint).

   TBD: We need a section on generating randomness in browsers; it's
   easy to screw up.

8.2.  JSON Security Considerations

   TBD: We need to look into any issues relating to security and JSON
   parsing.  One wonders just how secure most JSON parsing libraries
   are.  Were they ever hardened for security scenarios?  If not, what
   kind of holes does that open up?  We need to put in text about why
   strict JSON validation is necessary - basically, that if malformed
   JSON is received then the intent of the sender is impossible to
   reliably discern.

Jones, et al.           Expires November 13, 2012              [Page 14]
Internet-Draft          JSON Web Signature (JWS)                May 2012

8.3.  Unicode Comparison Security Considerations

   Header parameter names and algorithm names are Unicode strings.  For
   security reasons, the representations of these names must be compared
   verbatim after performing any escape processing (as per RFC 4627
   [RFC4627], Section 2.5).  This means, for instance, that these JSON
   strings must compare as being equal ("sig", "\u0073ig"), whereas
   these must all compare as being not equal to the first set or to each
   other ("SIG", "Sig", "si\u0047").

   JSON strings MAY contain characters outside the Unicode Basic
   Multilingual Plane.  For instance, the G clef character (U+1D11E) may
   be represented in a JSON string as "\uD834\uDD1E".  Ideally, JWS
   implementations SHOULD ensure that characters outside the Basic
   Multilingual Plane are preserved and compared correctly;
   alternatively, if this is not possible due to these characters
   exercising limitations present in the underlying JSON implementation,
   then input containing them MUST be rejected.

9.  Open Issues and Things To Be Done (TBD)

   The following items remain to be done in this draft:

   o  Add an example in which the payload is not a base64url encoded
      JSON object.

   o  Finish the Security Considerations section.

10.  References

10.1.  Normative References

   [JWA]      Jones, M., "JSON Web Algorithms (JWA)", May 2012.

   [JWK]      Jones, M., "JSON Web Key (JWK)", May 2012.

   [RFC1421]  Linn, J., "Privacy Enhancement for Internet Electronic
              Mail: Part I: Message Encryption and Authentication
              Procedures", RFC 1421, February 1993.

   [RFC2045]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part One: Format of Internet Message
              Bodies", RFC 2045, November 1996.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

Jones, et al.           Expires November 13, 2012              [Page 15]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
              10646", STD 63, RFC 3629, November 2003.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, January 2005.

   [RFC4627]  Crockford, D., "The application/json Media Type for
              JavaScript Object Notation (JSON)", RFC 4627, July 2006.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, October 2006.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, May 2008.

   [USA15]    Davis, M., Whistler, K., and M. Duerst, "Unicode
              Normalization Forms", Unicode Standard Annex 15, 09 2009.

10.2.  Informative References

   [CanvasApp]
              Facebook, "Canvas Applications", 2010.

   [JSS]      Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
              September 2010.

   [JWE]      Jones, M., Rescorla, E., and J. Hildebrand, "JSON Web
              Encryption (JWE)", May 2012.

   [JWS-JS]   Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature JSON Serialization (JWS-JS)", March 2012.

   [JWT]      Jones, M., Balfanz, D., Bradley, J., Goland, Y., Panzer,
              J., Sakimura, N., and P. Tarjan, "JSON Web Token (JWT)",
              May 2012.

   [MagicSignatures]
              Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
              Signatures", January 2011.

Jones, et al.           Expires November 13, 2012              [Page 16]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   [W3C.CR-xmldsig-core2-20120124]
              Eastlake, D., Reagle, J., Yiu, K., Solo, D., Datta, P.,
              Hirsch, F., Cantor, S., and T. Roessler, "XML Signature
              Syntax and Processing Version 2.0", World Wide Web
              Consortium CR CR-xmldsig-core2-20120124, January 2012,
              <http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124>.

   [W3C.WD-xmldsig-bestpractices-20110809]
              Datta, P. and F. Hirsch, "XML Signature Best Practices",
              World Wide Web Consortium WD WD-xmldsig-bestpractices-
              20110809, August 2011, <http://www.w3.org/TR/2011/
              WD-xmldsig-bestpractices-20110809>.

Appendix A.  JWS Examples

   This section provides several examples of JWSs.  While these examples
   all represent JSON Web Tokens (JWTs) [JWT], the payload can be any
   base64url encoded content.

A.1.  JWS using HMAC SHA-256

A.1.1.  Encoding

   The following example JWS Header declares that the data structure is
   a JSON Web Token (JWT) [JWT] and the JWS Secured Input is secured
   using the HMAC SHA-256 algorithm.
   {"typ":"JWT",
    "alg":"HS256"}

   The following byte array contains the UTF-8 representation of the JWS
   Header:

   [123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
   34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

   Base64url encoding these bytes yields this Encoded JWS Header value:
   eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

   The JWS Payload used in this example is the bytes of the UTF-8
   representation of the JSON object below.  (Note that the payload can
   be any base64url encoded sequence of bytes, and need not be a
   base64url encoded JSON object.)
   {"iss":"joe",
    "exp":1300819380,
    "http://example.com/is_root":true}

   The following byte array, which is the UTF-8 representation of the

Jones, et al.           Expires November 13, 2012              [Page 17]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   JSON object above, is the JWS Payload:

   [123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
   32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56,
   48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97,
   109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111,
   111, 116, 34, 58, 116, 114, 117, 101, 125]

   Base64url encoding the above yields the Encoded JWS Payload value
   (with line breaks for display purposes only):
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

   Concatenating the Encoded JWS Header, a period character, and the
   Encoded JWS Payload yields this JWS Secured Input value (with line
   breaks for display purposes only):
   eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
   .
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

   The UTF-8 representation of the JWS Secured Input (which is the same
   as the ASCII representation) is the following byte array:

   [101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81,
   105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74,
   73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51,
   77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67,
   74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84,
   107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100,
   72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76,
   109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73,
   106, 112, 48, 99, 110, 86, 108, 102, 81]

   HMACs are generated using keys.  This example uses the key
   represented by the following byte array:

   [3, 35, 53, 75, 43, 15, 165, 188, 131, 126, 6, 101, 119, 123, 166,
   143, 90, 179, 40, 230, 240, 84, 201, 40, 169, 15, 132, 178, 210, 80,
   46, 191, 211, 251, 90, 146, 210, 6, 71, 239, 150, 138, 180, 195, 119,
   98, 61, 34, 61, 46, 33, 114, 5, 46, 79, 8, 192, 205, 154, 245, 103,
   208, 128, 163]

   Running the HMAC SHA-256 algorithm on the bytes of the UTF-8
   representation of the JWS Secured Input (which is the same as the
   ASCII representation) with this key yields the following byte array:

   [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,

Jones, et al.           Expires November 13, 2012              [Page 18]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
   132, 141, 121]

   Base64url encoding the above HMAC output yields the Encoded JWS
   Signature value:
   dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

A.1.2.  Decoding

   Decoding the JWS first requires removing the base64url encoding from
   the Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS
   Signature.  We base64url decode the inputs and turn them into the
   corresponding byte arrays.  We decode the Encoded JWS Header byte
   array containing the UTF-8 representation of the JWS Header into the
   JWS Header string.

A.1.3.  Validating

   Next we validate the decoded results.  Since the "alg" parameter in
   the header is "HS256", we validate the HMAC SHA-256 value contained
   in the JWS Signature.  If any of the validation steps fail, the JWS
   MUST be rejected.

   First, we validate that the JWS Header string is legal JSON.

   To validate the HMAC value, we repeat the previous process of using
   the correct key and the UTF-8 representation of the JWS Secured Input
   (which is the same as the ASCII representation) as input to the HMAC
   SHA-256 function and then taking the output and determining if it
   matches the JWS Signature.  If it matches exactly, the HMAC has been
   validated.

A.2.  JWS using RSA SHA-256

A.2.1.  Encoding

   The JWS Header in this example is different from the previous example
   in two ways: First, because a different algorithm is being used, the
   "alg" value is different.  Second, for illustration purposes only,
   the optional "typ" parameter is not used.  (This difference is not
   related to the algorithm employed.)  The JWS Header used is:
   {"alg":"RS256"}

   The following byte array contains the UTF-8 representation of the JWS
   Header:

   [123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Jones, et al.           Expires November 13, 2012              [Page 19]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   Base64url encoding these bytes yields this Encoded JWS Header value:
   eyJhbGciOiJSUzI1NiJ9

   The JWS Payload used in this example, which follows, is the same as
   in the previous example.  Since the Encoded JWS Payload will
   therefore be the same, its computation is not repeated here.
   {"iss":"joe",
    "exp":1300819380,
    "http://example.com/is_root":true}

   Concatenating the Encoded JWS Header, a period character, and the
   Encoded JWS Payload yields this JWS Secured Input value (with line
   breaks for display purposes only):
   eyJhbGciOiJSUzI1NiJ9
   .
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

   The UTF-8 representation of the JWS Secured Input (which is the same
   as the ASCII representation) is the following byte array:

   [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73,
   49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
   74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
   65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
   65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
   121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
   98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
   99, 110, 86, 108, 102, 81]

   The RSA key consists of a public part (n, e), and a private exponent
   d.  The values of the RSA key used in this example, presented as the
   byte arrays representing big endian integers are:

Jones, et al.           Expires November 13, 2012              [Page 20]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   +-----------+-------------------------------------------------------+
   | Parameter | Value                                                 |
   | Name      |                                                       |
   +-----------+-------------------------------------------------------+
   | n         | [161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, |
   |           | 45, 101, 98, 99, 54, 43, 146, 125, 190, 41, 225, 240, |
   |           | 36, 119, 252, 22, 37, 204, 144, 161, 54, 227, 139,    |
   |           | 217, 52, 151, 197, 182, 234, 99, 221, 119, 17, 230,   |
   |           | 124, 116, 41, 249, 86, 176, 251, 138, 143, 8, 154,    |
   |           | 220, 75, 105, 137, 60, 193, 51, 63, 83, 237, 208, 25, |
   |           | 184, 119, 132, 37, 47, 236, 145, 79, 228, 133, 119,   |
   |           | 105, 89, 75, 234, 66, 128, 211, 44, 15, 85, 191, 98,  |
   |           | 148, 79, 19, 3, 150, 188, 110, 155, 223, 110, 189,    |
   |           | 210, 189, 163, 103, 142, 236, 160, 198, 104, 247, 1,  |
   |           | 179, 141, 191, 251, 56, 200, 52, 44, 226, 254, 109,   |
   |           | 39, 250, 222, 74, 90, 72, 116, 151, 157, 212, 185,    |
   |           | 207, 154, 222, 196, 199, 91, 5, 133, 44, 44, 15, 94,  |
   |           | 248, 165, 193, 117, 3, 146, 249, 68, 232, 237, 100,   |
   |           | 193, 16, 198, 182, 71, 96, 154, 164, 120, 58, 235,    |
   |           | 156, 108, 154, 215, 85, 49, 48, 80, 99, 139, 131,     |
   |           | 102, 92, 111, 111, 122, 130, 163, 150, 112, 42, 31,   |
   |           | 100, 27, 130, 211, 235, 242, 57, 34, 25, 73, 31, 182, |
   |           | 134, 135, 44, 87, 22, 245, 10, 248, 53, 141, 154,     |
   |           | 139, 157, 23, 195, 64, 114, 143, 127, 135, 216, 154,  |
   |           | 24, 216, 252, 171, 103, 173, 132, 89, 12, 46, 207,    |
   |           | 117, 147, 57, 54, 60, 7, 3, 77, 111, 96, 111, 158,    |
   |           | 33, 224, 84, 86, 202, 229, 233, 161]                  |
   | e         | [1, 0, 1]                                             |

Jones, et al.           Expires November 13, 2012              [Page 21]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   | d         | [18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82,   |
   |           | 108, 69, 0, 87, 31, 29, 97, 117, 29, 100, 233, 73,    |
   |           | 112, 123, 98, 89, 15, 157, 11, 165, 124, 150, 60, 64, |
   |           | 30, 63, 207, 47, 44, 211, 189, 236, 136, 229, 3, 191, |
   |           | 198, 67, 155, 11, 40, 200, 47, 125, 55, 151, 103, 31, |
   |           | 82, 19, 238, 216, 193, 90, 37, 216, 213, 206, 160, 2, |
   |           | 94, 227, 171, 46, 139, 127, 121, 33, 111, 198, 59,    |
   |           | 234, 86, 39, 83, 180, 6, 68, 198, 161, 81, 39, 217,   |
   |           | 178, 149, 69, 64, 160, 187, 225, 163, 5, 86, 152, 45, |
   |           | 78, 159, 222, 95, 100, 37, 241, 77, 75, 113, 52, 65,  |
   |           | 181, 93, 199, 59, 155, 74, 237, 204, 146, 172, 227,   |
   |           | 146, 126, 55, 245, 125, 12, 253, 94, 117, 129, 250,   |
   |           | 81, 44, 143, 73, 97, 169, 235, 11, 128, 248, 168, 7,  |
   |           | 70, 114, 138, 85, 255, 70, 71, 31, 52, 37, 6, 59,     |
   |           | 157, 83, 100, 47, 94, 222, 30, 132, 214, 19, 8, 26,   |
   |           | 250, 92, 34, 208, 81, 40, 91, 214, 59, 148, 59, 86,   |
   |           | 93, 137, 138, 5, 104, 84, 19, 229, 60, 60, 108, 101,  |
   |           | 37, 255, 31, 227, 78, 61, 220, 112, 240, 213, 100,    |
   |           | 80, 253, 164, 139, 161, 46, 16, 78, 157, 235, 159,    |
   |           | 184, 24, 129, 225, 196, 189, 242, 93, 146, 71, 244,   |
   |           | 80, 200, 101, 146, 121, 104, 231, 115, 52, 244, 65,   |
   |           | 79, 117, 167, 80, 225, 57, 84, 110, 58, 138, 115,     |
   |           | 157]                                                  |
   +-----------+-------------------------------------------------------+

   The RSA private key (n, d) is then passed to the RSA signing
   function, which also takes the hash type, SHA-256, and the bytes of
   the UTF-8 representation of the JWS Secured Input (which is the same
   as the ASCII representation) as inputs.  The result of the digital
   signature is a byte array S, which represents a big endian integer.
   In this example, S is:

Jones, et al.           Expires November 13, 2012              [Page 22]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   +--------+----------------------------------------------------------+
   | Result | Value                                                    |
   | Name   |                                                          |
   +--------+----------------------------------------------------------+
   | S      | [112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45,  |
   |        | 191, 120, 69, 243, 65, 6, 174, 27, 129, 255, 247, 115,   |
   |        | 17, 22, 173, 209, 113, 125, 131, 101, 109, 66, 10, 253,  |
   |        | 60, 150, 238, 221, 115, 162, 102, 62, 81, 102, 104, 123, |
   |        | 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69, 229, |
   |        | 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198,     |
   |        | 109, 219, 61, 184, 151, 91, 23, 208, 148, 2, 190, 237,   |
   |        | 213, 217, 217, 112, 7, 16, 141, 178, 129, 96, 213, 248,  |
   |        | 4, 12, 167, 68, 87, 98, 184, 31, 190, 127, 249, 217, 46, |
   |        | 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 74, 230,   |
   |        | 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212,   |
   |        | 1, 48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102,    |
   |        | 171, 101, 25, 129, 253, 228, 141, 247, 127, 55, 45, 195, |
   |        | 139, 159, 175, 221, 59, 239, 177, 139, 93, 163, 204, 60, |
   |        | 46, 176, 47, 158, 58, 65, 214, 18, 202, 173, 21, 145,    |
   |        | 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157,  |
   |        | 105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212,  |
   |        | 14, 96, 69, 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, |
   |        | 99, 209, 108, 247, 202, 234, 86, 222, 64, 92, 178, 33,   |
   |        | 90, 69, 178, 194, 85, 102, 181, 90, 193, 167, 72, 160,   |
   |        | 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238, 251,  |
   |        | 71]                                                      |
   +--------+----------------------------------------------------------+

   Base64url encoding the digital signature produces this value for the
   Encoded JWS Signature (with line breaks for display purposes only):
   cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7
   AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
   BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K
   0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv
   hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
   p0igcN_IoypGlUPQGe77Rw

A.2.2.  Decoding

   Decoding the JWS from this example requires processing the Encoded
   JWS Header and Encoded JWS Payload exactly as done in the first
   example.

A.2.3.  Validating

   Since the "alg" parameter in the header is "RS256", we validate the
   RSA SHA-256 digital signature contained in the JWS Signature.  If any
   of the validation steps fail, the JWS MUST be rejected.

Jones, et al.           Expires November 13, 2012              [Page 23]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   First, we validate that the JWS Header string is legal JSON.

   Validating the JWS Signature is a little different from the previous
   example.  First, we base64url decode the Encoded JWS Signature to
   produce a digital signature S to check.  We then pass (n, e), S and
   the bytes of the UTF-8 representation of the JWS Secured Input (which
   is the same as the ASCII representation) to an RSA signature verifier
   that has been configured to use the SHA-256 hash function.

A.3.  JWS using ECDSA P-256 SHA-256

A.3.1.  Encoding

   The JWS Header for this example differs from the previous example
   because a different algorithm is being used.  The JWS Header used is:
   {"alg":"ES256"}

   The following byte array contains the UTF-8 representation of the JWS
   Header:

   [123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

   Base64url encoding these bytes yields this Encoded JWS Header value:
   eyJhbGciOiJFUzI1NiJ9

   The JWS Payload used in this example, which follows, is the same as
   in the previous examples.  Since the Encoded JWS Payload will
   therefore be the same, its computation is not repeated here.
   {"iss":"joe",
    "exp":1300819380,
    "http://example.com/is_root":true}

   Concatenating the Encoded JWS Header, a period character, and the
   Encoded JWS Payload yields this JWS Secured Input value (with line
   breaks for display purposes only):
   eyJhbGciOiJFUzI1NiJ9
   .
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

   The UTF-8 representation of the JWS Secured Input (which is the same
   as the ASCII representation) is the following byte array:

   [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73,
   49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
   74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
   65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
   65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,

Jones, et al.           Expires November 13, 2012              [Page 24]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
   98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
   99, 110, 86, 108, 102, 81]

   The ECDSA key consists of a public part, the EC point (x, y), and a
   private part d.  The values of the ECDSA key used in this example,
   presented as the byte arrays representing big endian integers are:

   +-----------+-------------------------------------------------------+
   | Parameter | Value                                                 |
   | Name      |                                                       |
   +-----------+-------------------------------------------------------+
   | x         | [127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203,  |
   |           | 238, 111, 219, 75, 123, 88, 7, 51, 53, 123, 233, 239, |
   |           | 19, 186, 207, 110, 60, 123, 209, 84, 69]              |
   | y         | [199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223,  |
   |           | 237, 185, 238, 185, 244, 179, 105, 93, 110, 169, 11,  |
   |           | 36, 173, 138, 70, 35, 40, 133, 136, 229, 173]         |
   | d         | [142, 155, 16, 158, 113, 144, 152, 191, 152, 4, 135,  |
   |           | 223, 31, 93, 119, 233, 203, 41, 96, 110, 190, 210,    |
   |           | 38, 59, 95, 87, 194, 19, 223, 132, 244, 178]          |
   +-----------+-------------------------------------------------------+

   The ECDSA private part d is then passed to an ECDSA signing function,
   which also takes the curve type, P-256, the hash type, SHA-256, and
   the bytes of the UTF-8 representation of the JWS Secured Input (which
   is the same as the ASCII representation) as inputs.  The result of
   the digital signature is the EC point (R, S), where R and S are
   unsigned integers.  In this example, the R and S values, given as
   byte arrays representing big endian integers are:

   +--------+----------------------------------------------------------+
   | Result | Value                                                    |
   | Name   |                                                          |
   +--------+----------------------------------------------------------+
   | R      | [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, |
   |        | 7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129,  |
   |        | 154, 195, 22, 158, 166, 101]                             |
   | S      | [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175,  |
   |        | 8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154,   |
   |        | 143, 63, 127, 138, 131, 163, 84, 213]                    |
   +--------+----------------------------------------------------------+

   Concatenating the S array to the end of the R array and base64url
   encoding the result produces this value for the Encoded JWS Signature
   (with line breaks for display purposes only):
   DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA
   pmWQxfKTUJqPP3-Kg6NU1Q

Jones, et al.           Expires November 13, 2012              [Page 25]
Internet-Draft          JSON Web Signature (JWS)                May 2012

A.3.2.  Decoding

   Decoding the JWS from this example requires processing the Encoded
   JWS Header and Encoded JWS Payload exactly as done in the first
   example.

A.3.3.  Validating

   Since the "alg" parameter in the header is "ES256", we validate the
   ECDSA P-256 SHA-256 digital signature contained in the JWS Signature.
   If any of the validation steps fail, the JWS MUST be rejected.

   First, we validate that the JWS Header string is legal JSON.

   Validating the JWS Signature is a little different from the first
   example.  First, we base64url decode the Encoded JWS Signature as in
   the previous examples but we then need to split the 64 member byte
   array that must result into two 32 byte arrays, the first R and the
   second S. We then pass (x, y), (R, S) and the bytes of the UTF-8
   representation of the JWS Secured Input (which is the same as the
   ASCII representation) to an ECDSA signature verifier that has been
   configured to use the P-256 curve with the SHA-256 hash function.

   As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA]
   specification, the use of the k value in ECDSA means that we cannot
   validate the correctness of the digital signature in the same way we
   validated the correctness of the HMAC.  Instead, implementations MUST
   use an ECDSA validator to validate the digital signature.

A.4.  Example Plaintext JWS

   The following example JWS Header declares that the encoded object is
   a Plaintext JWS:
   {"alg":"none"}

   Base64url encoding the bytes of the UTF-8 representation of the JWS
   Header yields this Encoded JWS Header:
   eyJhbGciOiJub25lIn0

   The JWS Payload used in this example, which follows, is the same as
   in the previous examples.  Since the Encoded JWS Payload will
   therefore be the same, its computation is not repeated here.
   {"iss":"joe",
    "exp":1300819380,
    "http://example.com/is_root":true}

   The Encoded JWS Signature is the empty string.

Jones, et al.           Expires November 13, 2012              [Page 26]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   Concatenating these parts in the order Header.Payload.Signature with
   period characters between the parts yields this complete JWS (with
   line breaks for display purposes only):
   eyJhbGciOiJub25lIn0
   .
   eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
   cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
   .

Appendix B.  Notes on implementing base64url encoding without padding

   This appendix describes how to implement base64url encoding and
   decoding functions without padding based upon standard base64
   encoding and decoding functions that do use padding.

   To be concrete, example C# code implementing these functions is shown
   below.  Similar code could be used in other languages.
   static string base64urlencode(byte [] arg)
   {
     string s = Convert.ToBase64String(arg); // Standard base64 encoder
     s = s.Split('=')[0]; // Remove any trailing '='s
     s = s.Replace('+', '-'); // 62nd char of encoding
     s = s.Replace('/', '_'); // 63rd char of encoding
     return s;
   }

   static byte [] base64urldecode(string arg)
   {
     string s = arg;
     s = s.Replace('-', '+'); // 62nd char of encoding
     s = s.Replace('_', '/'); // 63rd char of encoding
     switch (s.Length % 4) // Pad with trailing '='s
     {
       case 0: break; // No pad chars in this case
       case 2: s += "=="; break; // Two pad chars
       case 3: s += "="; break; // One pad char
       default: throw new System.Exception(
         "Illegal base64url string!");
     }
     return Convert.FromBase64String(s); // Standard base64 decoder
   }

   As per the example code above, the number of '=' padding characters
   that needs to be added to the end of a base64url encoded string
   without padding to turn it into one with padding is a deterministic
   function of the length of the encoded string.  Specifically, if the
   length mod 4 is 0, no padding is added; if the length mod 4 is 2, two

Jones, et al.           Expires November 13, 2012              [Page 27]
Internet-Draft          JSON Web Signature (JWS)                May 2012

   '=' padding characters are added; if the length mod 4 is 3, one '='
   padding character is added; if the length mod 4 is 1, the input is
   malformed.

   An example correspondence between unencoded and encoded values
   follows.  The byte sequence below encodes into the string below,
   which when decoded, reproduces the byte sequence.
   3 236 255 224 193
   A-z_4ME

Appendix C.  Acknowledgements

   Solutions for signing JSON content were previously explored by Magic
   Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas
   Applications [CanvasApp], all of which influenced this draft.  Dirk
   Balfanz, Yaron Y. Goland, John Panzer, and Paul Tarjan all made
   significant contributions to the design of this specification.

Appendix D.  Document History

   -02

   o  Clarified that it is an error when a "kid" value is included and
      no matching key is found.

   o  Removed assumption that "kid" (key ID) can only refer to an
      asymmetric key.

   o  Clarified that JWSs with duplicate Header Parameter Names MUST be
      rejected.

   o  Clarified the relationship between "typ" header parameter values
      and MIME types.

   o  Registered application/jws MIME type and "JWS" typ header
      parameter value.

   o  Simplified JWK terminology to get replace the "JWK Key Object" and
      "JWK Container Object" terms with simply "JSON Web Key (JWK)" and
      "JSON Web Key Set (JWK Set)" and to eliminate potential confusion
      between single keys and sets of keys.  As part of this change, the
      header parameter name for a public key value was changed from
      "jpk" (JSON Public Key) to "jwk" (JSON Web Key).

   o  Added suggestion on defining additional header parameters such as
      "x5t#S256" in the future for certificate thumbprints using hash

Jones, et al.           Expires November 13, 2012              [Page 28]
Internet-Draft          JSON Web Signature (JWS)                May 2012

      algorithms other than SHA-1.

   o  Specify RFC 2818 server identity validation, rather than RFC 6125
      (paralleling the same decision in the OAuth specs).

   o  Generalized language to refer to Message Authentication Codes
      (MACs) rather than Hash-based Message Authentication Codes (HMACs)
      unless in a context specific to HMAC algorithms.

   o  Reformatted to give each header parameter its own section heading.

   -01

   o  Moved definition of Plaintext JWSs (using "alg":"none") here from
      the JWT specification since this functionality is likely to be
      useful in more contexts that just for JWTs.

   o  Added "jpk" and "x5c" header parameters for including JWK public
      keys and X.509 certificate chains directly in the header.

   o  Clarified that this specification is defining the JWS Compact
      Serialization.  Referenced the new JWS-JS spec, which defines the
      JWS JSON Serialization.

   o  Added text "New header parameters should be introduced sparingly
      since an implementation that does not understand a parameter MUST
      reject the JWS".

   o  Clarified that the order of the creation and validation steps is
      not significant in cases where there are no dependencies between
      the inputs and outputs of the steps.

   o  Changed "no canonicalization is performed" to "no canonicalization
      need be performed".

   o  Corrected the Magic Signatures reference.

   o  Made other editorial improvements suggested by JOSE working group
      participants.

   -00

   o  Created the initial IETF draft based upon
      draft-jones-json-web-signature-04 with no normative changes.

   o  Changed terminology to no longer call both digital signatures and
      HMACs "signatures".

Jones, et al.           Expires November 13, 2012              [Page 29]
Internet-Draft          JSON Web Signature (JWS)                May 2012

Authors' Addresses

   Michael B. Jones
   Microsoft

   Email: mbj@microsoft.com
   URI:   http://self-issued.info/

   John Bradley
   Ping Identity

   Email: ve7jtb@ve7jtb.com

   Nat Sakimura
   Nomura Research Institute

   Email: n-sakimura@nri.co.jp

Jones, et al.           Expires November 13, 2012              [Page 30]