Methods for Detection and Mitigation of BGP Route Leaks
draft-ietf-idr-route-leak-detection-mitigation-00

The information below is for an old version of the document
Document Type Active Internet-Draft (idr WG)
Last updated 2015-08-10
Replaces draft-sriram-idr-route-leak-detection-mitigation
Replaced by draft-ietf-grow-route-leak-detection-mitigation
Stream IETF
Intended RFC status (None)
Formats plain text pdf html bibtex
Additional URLs
- Mailing list discussion
Stream WG state WG Document
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
IDR and SIDR                                                   K. Sriram
Internet-Draft                                             D. Montgomery
Intended status: Standards Track                                 US NIST
Expires: January 23, 2016                                     B. Dickson
                                                           Twitter, Inc.
                                                           July 22, 2015

        Methods for Detection and Mitigation of BGP Route Leaks
           draft-ietf-idr-route-leak-detection-mitigation-00

Abstract

   In [I-D.ietf-grow-route-leak-problem-definition], the authors have
   provided a definition of the route leak problem, and also enumerated
   several types of route leaks.  In this document, we first examine
   which of those route-leak types are detected and mitigated by the
   existing origin validation (OV) [RFC 6811] and BGPSEC path validation
   [I-D.ietf-sidr-bgpsec-protocol].  Where the current OV and BGPSEC
   protocols don't offer a solution, this document suggests an
   enhancement that would extend the route-leak detection and mitigation
   capability of BGPSEC.  The solution can be implemented in BGP without
   necessarily tying it to BGPSEC.  Incorporating the solution in BGPSEC
   is one way of implementing it in a secure way.  We do not claim to
   have provided a solution for all possible types of route leaks, but
   the solution covers several, especially considering some significant
   route-leak attacks or occurrences that have been observed in recent
   years.  The document also includes a stopgap method for detection and
   mitigation of route leaks for the phase when BGPSEC (path validation)
   is not yet deployed but only origin validation is deployed.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 23, 2016.

Sriram, et al.          Expires January 23, 2016                [Page 1]
Internet-Draft     Route Leak Detection and Mitigation         July 2015

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Related Prior Work  . . . . . . . . . . . . . . . . . . . . .   3
   3.  Mechanisms for Detection and Mitigation of Route Leaks  . . .   4
     3.1.  Route Leak Protection (RLP) Field Encoding by Sending
           Router  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     3.2.  Recommended Actions at a Receiving Router for Detection
           of Route Leaks  . . . . . . . . . . . . . . . . . . . . .   8
       3.2.1.  Recommended Actions at a Receiving Router when the
               Sender is a Customer  . . . . . . . . . . . . . . . .   8
       3.2.2.  Recommended Actions at a Receiving Router when the
               Sender is a Peer  . . . . . . . . . . . . . . . . . .   9
     3.3.  Possible Actions at a Receiving Router for Mitigation . .  10
   4.  Stopgap Solution when Only Origin Validation is Deployed  . .  10
   5.  Design Rationale and Discussion . . . . . . . . . . . . . . .  11
     5.1.  Is route-leak solution without BGPSEC a serious attack
           vector? . . . . . . . . . . . . . . . . . . . . . . . . .  11
     5.2.  Comparison with other methods, routing security BCP . . .  12
   6.  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  13
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  13
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  13
Show full document text