Skip to main content

Authenticated Received Chain (ARC) Protocol
draft-ietf-dmarc-arc-protocol-07

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 8617.
Authors Kurt Andersen , Brandon Long , Steven M Jones , Murray Kucherawy
Last updated 2017-07-20
Replaces draft-andersen-arc
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 8617 (Experimental)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-dmarc-arc-protocol-07
DMARC Working Group                                          K. Andersen
Internet-Draft                                                  LinkedIn
Intended status: Standards Track                            B. Long, Ed.
Expires: January 22, 2018                                         Google
                                                           S. Jones, Ed.
                                                       M. Kucherawy, Ed.
                                                                     TDP
                                                           July 21, 2017

              Authenticated Received Chain (ARC) Protocol
                    draft-ietf-dmarc-arc-protocol-07

Abstract

   The Authenticated Received Chain (ARC) protocol creates a mechanism
   whereby a series of handlers of a message can conduct authentication
   of a message as it passes among them on the way to its destination,
   and record the status of that authentication at each step along the
   handling path, for use by the final recipient in making choices about
   the disposition of the message.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 22, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Andersen, et al.        Expires January 22, 2018                [Page 1]
Internet-Draft                ARC-Protocol                     July 2017

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
   4.  Instance ('i=') Tags  . . . . . . . . . . . . . . . . . . . .   5
     4.1.  Valid Range for Instance Tags . . . . . . . . . . . . . .   6
   5.  The ARC Header Fields . . . . . . . . . . . . . . . . . . . .   6
     5.1.  ARC-Authentication-Results (AAR)  . . . . . . . . . . . .   6
     5.2.  ARC-Message-Signature (AMS) . . . . . . . . . . . . . . .   7
     5.3.  ARC-Seal (AS) . . . . . . . . . . . . . . . . . . . . . .   7
       5.3.1.  The 'cv' Tag  . . . . . . . . . . . . . . . . . . . .   8
       5.3.2.  Selected Header Fields  . . . . . . . . . . . . . . .   8
   6.  Verifier Actions  . . . . . . . . . . . . . . . . . . . . . .   9
   7.  Signer Actions  . . . . . . . . . . . . . . . . . . . . . . .  10
   8.  Key Management  . . . . . . . . . . . . . . . . . . . . . . .  11
   9.  Usage of Chain Validity . . . . . . . . . . . . . . . . . . .  11
     9.1.  Assessing Chain Validity Violations . . . . . . . . . . .  11
     9.2.  Marking and Sealing Invalid Chains  . . . . . . . . . . .  11
     9.3.  Handling DNS Problems While Validating ARC  . . . . . . .  12
     9.4.  Responding to ARC Validity Violations . . . . . . . . . .  12
     9.5.  Recording the Results of ARC Evaluation . . . . . . . . .  12
       9.5.1.  Output Information from an ARC Evaluation . . . . . .  12
       9.5.2.  Reporting ARC Effects for DMARC Local Policy -
               Interim . . . . . . . . . . . . . . . . . . . . . . .  13
   10. Supporting Alternate Signing Algorithms . . . . . . . . . . .  13
     10.1.  Introductory Period  . . . . . . . . . . . . . . . . . .  14
     10.2.  Co-Existence Period  . . . . . . . . . . . . . . . . . .  14
     10.3.  Deprecation Period . . . . . . . . . . . . . . . . . . .  14
   11. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  14
   12. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
     12.1.  Authentication-Results Method Registry Update  . . . . .  14
     12.2.  Definitions of the ARC header fields . . . . . . . . . .  15
   13. Implementation Status . . . . . . . . . . . . . . . . . . . .  15
     13.1.  GMail test reflector and incoming validation . . . . . .  16
     13.2.  AOL test reflector and internal tagging  . . . . . . . .  16
     13.3.  dkimpy . . . . . . . . . . . . . . . . . . . . . . . . .  17
     13.4.  OpenARC  . . . . . . . . . . . . . . . . . . . . . . . .  17
     13.5.  Mailman addition . . . . . . . . . . . . . . . . . . . .  18
     13.6.  Copernica/MailerQ web-based validation . . . . . . . . .  18
     13.7.  Rspamd . . . . . . . . . . . . . . . . . . . . . . . . .  19
     13.8.  PERL Mail::Milter::Authentication module . . . . . . . .  19

Andersen, et al.        Expires January 22, 2018                [Page 2]
Internet-Draft                ARC-Protocol                     July 2017

   14. Security Considerations . . . . . . . . . . . . . . . . . . .  20
     14.1.  Message Content Suspicion  . . . . . . . . . . . . . . .  20
   15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  20
     15.1.  Normative References . . . . . . . . . . . . . . . . . .  20
     15.2.  Informative References . . . . . . . . . . . . . . . . .  22
     15.3.  URIs . . . . . . . . . . . . . . . . . . . . . . . . . .  23
   Appendix A.  Appendix A - Example Usage (Obsolete but retained
                for illustrative purposes) . . . . . . . . . . . . .  23
     A.1.  Example 1: Simple mailing list  . . . . . . . . . . . . .  23
       A.1.1.  Here's the message as it exits the Origin:  . . . . .  23
       A.1.2.  Message is then received at example.org . . . . . . .  24
       A.1.3.  Example 1: Message received by Recipient  . . . . . .  26
     A.2.  Example 2: Mailing list to forwarded mailbox  . . . . . .  27
       A.2.1.  Here's the message as it exits the Origin:  . . . . .  27
       A.2.2.  Message is then received at example.org . . . . . . .  28
       A.2.3.  Example 2: Message received by Recipient  . . . . . .  32
     A.3.  Example 3: Mailing list to forwarded mailbox with source   34
       A.3.1.  Here's the message as it exits the Origin:  . . . . .  34
       A.3.2.  Message is then received at example.org . . . . . . .  35
       A.3.3.  Example 3: Message received by Recipient  . . . . . .  40
   Appendix B.  Acknowledgements . . . . . . . . . . . . . . . . . .  42
   Appendix C.  Comments and Feedback  . . . . . . . . . . . . . . .  43
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  43

1.  Introduction

   Modern email authentication techniques such as the Sender Policy
   Framework (SPF) [RFC7208] and DomainKeys Identified Mail (DKIM)
   [RFC6376] have become ubiquitious.  However, they are stymied by a
   small number of common applications, most notably mailing list
   managers, as these applications have handling properties that prevent
   these authentication schemes from universal effectiveness.  These
   issues are described in substantial detail in those protocols'
   defining documents as well as in [RFC6377].

   In an effort to reduce the success of fraudulent email campaigns,
   there has been an effort to develop and deploy technologies that use
   SPF and DKIM to assure legitimate use of the identity of the apparent
   message author, i.e., the visible "From:" field in a message.  To
   this end, Domain-based Mail Authentication, Reporting and Compliance
   (DMARC) [RFC7489] has been developed and deployed.  However, its
   deployment in environments where mailing lists are used has had the
   negative impacts predicted in the documents listed above.

   What is needed is a mechanism by which legitimate alteration of a
   message, invalidating SPF and DKIM, does not ultimately result in a
   rejection of an email message on delivery.  An Authenticated Received
   Chain (ARC), described here, provides a superset of the functionality

Andersen, et al.        Expires January 22, 2018                [Page 3]
Internet-Draft                ARC-Protocol                     July 2017

   of DKIM in order to provide to the final message recipient a more
   complete view into the handling chain of a message and the points in
   that chain where alterations of the content may have occurred.
   Equipped with this more compelte information, the final recipient can
   make a more informed handling choice, reducing or eliminating the
   false postives inherent in use of DKIM and/or SPF themselves.

2.  Overview

   In DKIM, every participating signing agent attaches a signature that
   is based on the content of the message, local policy, and the domain
   name of the participating Administrative Management Domain (ADMD).
   Any verifier can process such a signature; a verified signature means
   the message content that was "covered" by the signature has not been
   altered since the signature was applied.  The signatures themselves
   are generally independent of one another.

   By contrast, this protocol seeks to have each signature be able to
   convey the following pieces of information:

   1.  As with DKIM, an assertion that, for a passing signature, the
       domain name in the signature takes some responsibility for
       handling of the message and that the message is unchanged since
       that signature was applied;

   2.  A further assertion that, at the time that same ADMD processed
       the message, the various assertions already attached to the
       message by other ADMDs were or were not valid;

   3.  A further assertion that combines and protects the above against
       alteration by later handlers.

   This protocol accomplishes each of these by adding a new header field
   to the message for each of them, as follows:

   o  ARC-Authentication-Results: (referred to below as "AAR") virtually
      identical in syntax to an Authentication-Results field [RFC7601],
      this field records the results of all message authentication
      checks done by the recording ADMD at the time the message arrived;

   o  ARC-Message-Signature: (referred to below as "AMS") virtually
      identical in syntax to DKIM-Signature, this field contains the
      assertions about the message header and body as they existed at
      the time of handling by the ADMD adding it; and

   o  ARC-Seal: (referred to below as "AS") highly similar in structure
      and format to a DKIM-Signature, this field applies a digital
      signature that protects the integrity of all three of these new

Andersen, et al.        Expires January 22, 2018                [Page 4]
Internet-Draft                ARC-Protocol                     July 2017

      fields when they are added by an ADMD, plus all instances of these
      fields added by prior ADMDs.

   A distinguishing feature of all of these is that an ARC participant
   always adds all of them before relaying a message to the next
   handling agent en route to its destination.  Moreover, as described
   in Section 4, they each have an "instance" number that increases with
   each ADMD in the handling chain so that their original order can be
   preserved and the three of them can be processed as a group.

3.  Terminology

   This section defines terms used in the rest of the document.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   Readers are encouraged to be familiar with the contents of [RFC5598],
   and in particular, the potential roles of intermediaries in the
   delivery of email.

   Syntax descriptions use Augmented BNF (ABNF) [RFC5234].

   A single group of the header fields introduced in Section 2 is called
   an "ARC Set", and the complete sequence of these groups is called an
   "Authenticated Received Chain" or merely an "ARC chain".  Although
   the "Received" header field is typically not included in the signed
   content, the name is based on the notion that this is in essence a
   cryptographically signed series of header fields that attest to the
   handling chain of a message much as Received fields always have.

4.  Instance ('i=') Tags

   The header fields comprising a single ARC set are identified by the
   presence of a string in the value portion of the header field that
   complies with the "tag-spec" ABNF found in Section 3.2 of [RFC6376].
   The tag-name is always the single character "i" and the value is the
   text representation of a positive integer, indicating the position in
   the ARC sequence this set occupies, where the first ARC set is
   numbered 1.  In ABNF terms:

      instance = [FWS] %x69 [FWS] "=" [FWS] 1*DIGIT [FWS] ";"

   At any delivery stage, it is an error if any ARC set is invalid
   (i.e., does not contain exactly one of the three header fields
   defined by this protocol).

Andersen, et al.        Expires January 22, 2018                [Page 5]
Internet-Draft                ARC-Protocol                     July 2017

   Note that because the AMS and AS header field values are made up of
   tag-spec constructs, the i= tag may be found anywhere within the
   header field value, but is represented throughout this spec in the
   initial position for convenience.  Implementers SHOULD seek to start
   with the i= tag to facilitate human inspection of the headers.

4.1.  Valid Range for Instance Tags

   The 'i' tag value can range from 1-1024 (inclusive).

   ARC implementations MUST support at least ten (10) intermediary
   steps.

   More than fifty (50) intermediaries is considered extremely unlikely
   so ARC chains with more than fifty intermediaries may be marked with
   "cv=fail".

5.  The ARC Header Fields

   The three header fields that are part of this specification borrow
   heavily from existing specifications.  Rather than repeating all of
   the formal definitions that are being recycled in ARC, this document
   instead only describes and specifies changes in syntax and semantics.

5.1.  ARC-Authentication-Results (AAR)

   The ARC-Authentication-Results header field is defined.  It is
   syntactically and semantically identical to an Authentication-Results
   header field [RFC7601] (A-R), as is the mechanism by which it is
   constructed, with the following exception:

   o  There is an "i" tag, as described in Section 4.

   The instance identifier MUST be separated from the rest of the
   Authentication-Results value contents with a semi-colon (';', 0x3b).

   An ARC signer generates this field in the same way that a
   conventional A-R field would be generated.  Because the AAR is
   designed for machine-based consumption over the course of a message's
   transit through a series of mediators and to facilitate
   troubleshooting of problematic sources by sending organizations, two
   additional fields of data SHOULD be added to the normal A-R content,
   if available to the A-R generating system:

   o  source.ip - The connecting client IP address from which the
      message is received; and

Andersen, et al.        Expires January 22, 2018                [Page 6]
Internet-Draft                ARC-Protocol                     July 2017

   o  header.s - The selector value associated with each dkim signature
      (added to the dkim or arc data sections of the A-R/AAR record

   The purpose of this header field is to incorporate into the record
   the success or failure of any authentication done on the message
   upstream of the participating ADMD, to validate and continue the
   authentication chain.

   In processing, some architectures will generate multiple A-R records
   for the same authserv-id.  In such cases, the resinfo value from each
   of the A-R records should be concatenated into a single record just
   as they would have been if they were generated in a single A-R
   record.

5.2.  ARC-Message-Signature (AMS)

   The ARC-Message-Signature header field is defined.  It is
   syntactically and semantically identical to a DKIM-Signature header
   field [RFC6376], as is the mechanism by which it is constructed, with
   the following exceptions:

   o  There is an "i" tag, as described in Section 4.

   o  There is no "v" tag.

   o  ARC-Seal header fields MUST never be included in the content
      covered by the signature in this header field.

   The AMS SHOULD include any DKIM-Signature header fields already
   present on the message in the header fields covered by this
   signature.

   Authentication-Results header fields SHOULD NOT be included since
   they are likely to be deleted by downstream ADMDs, thereby breaking
   the AMS signature.

   As with a DKIM-Signature, the purpose of this header field is to
   allow the ADMD generating it to take some responsibility for handling
   this message as it progresses toward delivery.

5.3.  ARC-Seal (AS)

   The ARC-Seal header field is defined.  It is syntactically and
   semantically similar to a DKIM-Signature field, with the following
   exceptions:

   o  There is an "i" tag, as described in Section 4.

Andersen, et al.        Expires January 22, 2018                [Page 7]
Internet-Draft                ARC-Protocol                     July 2017

   o  The ARC-Seal covers none of the body content of the message.  It
      only covers specific header fields.  (See below: Section 5.3.2.)
      As a result, no body canonicalization is done.  Further, only
      "relaxed" header canonicalization (Section 3.4.2 of [RFC6376]) is
      used.

   o  The only supported tags are "i" (Section 4 supercedes the
      [RFC6376] definition), and "a", "b", "d, "s", "t".  The latter 5
      tag definitions are copied from Section 3.5 of [RFC6376].

   o  An additional tag, "cv" is defined.  (See below: Section 5.3.1)

   The purpose of this field is to assure the integrity of the ARC set
   being added by the ADMD generating this header field, and moreover to
   ensure no tampering with the ARC overall.

5.3.1.  The 'cv' Tag

   A new tag "cv" (chain validation) is defined, which indicates the
   state of the ARC chain as evaluated when it arrived at the ADMD
   adding this header field.  It includes one of three possible values:

   o  none: There was no chain on the message when it arrived for
      validation; typically occurs when the message arrives at a Message
      Transfer Agent (MTA) from a Message Submission Agent (MSA) or when
      any upstream MTAs may not be participating in ARC handling;

   o  fail: The message has a chain whose validation failed;

   o  pass: The message has a chain whose validation succeeded.

   In ABNF terms:

    seal-cv-tag = %x63.76 [FWS] "=" [FWS]
                  ("none" / "fail" / "pass")

5.3.2.  Selected Header Fields

   The ARC-Seal signature is an encryption of the hash of the
   concatenation of the canonicalized form of the ARC sets present on
   the message at the time of sealing, in increasing instance order,
   starting at 1, including the one being added at the time of sealing
   the message.

   Within a set, the header fields are presented in the following order:

   1.  ARC-Authentication-Results

Andersen, et al.        Expires January 22, 2018                [Page 8]
Internet-Draft                ARC-Protocol                     July 2017

   2.  ARC-Message-Signature

   3.  ARC-Seal

   Where the ARC-Seal is the one being generated, it is presented to the
   hash function in its final form except with an empty "b=" value, in
   the same manner by which a DKIM-Signature signs itself.

6.  Verifier Actions

   The verifier takes the following steps to determine the current state
   of the ARC on the message:

   1.  Collect all ARC sets currently on the message.  If there were
       none, the ARC state is "none" and the algorithm stops here.

   2.  If any ARC set is invalid (e.g., does not contain exactly one of
       each of the three ARC-specific header fields), then the chain
       state is "fail" and the algorithm stops here.

   3.  Conduct verification of the ARC-Message-Signature header field
       bearing the highest instance number.  If this verification fails,
       then the chain state is "fail" and the algorithm stops here.

   4.  For each ARC-Seal from the "N"th instance to the first, apply the
       following logic:

       1.  If the value of the "cv" tag on that seal is "fail", the
           chain state is "fail" and the algorithm stops here.

       2.  If the instance number being processed is greater than 1 and
           the value of the "cv" tag is "none", the chain state is
           "fail" and the algorithm stops here.

       3.  If the instance number being processed is 1 and the value of
           the "cv" tag is not "none", the chain state is "fail" and the
           algorithm stops here.

       4.  Prepare a hash function corresponding to the "a" tag of the
           ARC-Seal.

       5.  Compute the canonicalized form of the ARC header fields, in
           the order described in Section 5.3.2, using the "relaxed"
           header canonicalization defined in (Section 3.4.2 of
           [RFC6376].  Pass them to the hash function.

       6.  Retrieve the final digest from the hash function.

Andersen, et al.        Expires January 22, 2018                [Page 9]
Internet-Draft                ARC-Protocol                     July 2017

       7.  Retrieve the public key identified by the "s" and "d" tags in
           the ARC-Seal, as described in Section 8.

       8.  Determine whether the signature portion ("b" tag) of the ARC-
           Seal and the digest computed above are valid according to the
           public key.

       9.  If the signature is not valid, the chain state is "fail" and
           the algorithm stops here.

   5.  If all seals pass validation, then the chain state is "pass", and
       the algorithm is complete.

   The verifier should record the cv state for subsequent use by any
   sealing which may be done later (potentially after message
   modification) within the same trust boundary.  The cv state may be
   recorded by sealing at the time of verification in an additional ARC
   set or may be recorded out of band depending on the architecture of
   the ADMD.

7.  Signer Actions

   This section includes a walk-through of the actions an ARC signing
   implementation takes when presented with a message.

   The signing agent should undertake the following steps:

   1.  Do any authentication steps that the ADMD normally does:

       1.  If a message is traveling within the same trust boundary,
           this would include any transitive trust conveyance with the
           message;

       2.  If a message is coming from outside the same trust boundary,
           this would include any SPF / DKIM / DMARC / other
           authentication evaluation steps.

   2.  Do any DKIM signing or authentication assertion steps that the
       ADMD normally does.

   3.  Generate and optionally attach to the message an Authentication-
       Results header field using the ADMD's authserv-id (see
       Section 2.5 of [RFC7601]) indicating whatever authentication
       might have been done by the MTA, or possibly indicate that none
       was done.

Andersen, et al.        Expires January 22, 2018               [Page 10]
Internet-Draft                ARC-Protocol                     July 2017

       1.  If an ARC chain exists on the message, then set "N" equal to
           the highest instance number found on the chain (i=);
           otherwise set "N" equal to zero for the following steps.

   4.  Generate and attach to the message an ARC-Authentication-Results
       header field using instance number N+1 and the same content from
       the previous step.

   5.  Generate and attach to the message an ARC-Message-Signature
       header field using the general algorithm described in Section 5
       of [RFC6376] and as modified in Section 5.1 above, using instance
       number N+1.

   6.  Generate and attach to the message an ARC-Seal header field using
       the general algorithm described in Section 5.3 above, using a
       chain validation status as determined in Section 6 and instance
       number N+1.

8.  Key Management

   The public keys for ARC header fields follow the same requirements,
   syntax and semantics as those for DKIM signatures, described in
   Section 3.6 of [RFC6376].  Operators may use distinct selectors and/
   or domains for the ARC header fields at their own discretion.

9.  Usage of Chain Validity

9.1.  Assessing Chain Validity Violations

   There are a wide variety of ways in which the ARC set of header
   fields can be broken.  Receivers need to be wary of ascribing motive
   to such breakage although patterns of common behaviour may provide
   some basis for adjusting local policy decisions.

   This specification is exclusively focused on well-behaved,
   participating intermediaries that result in a valid chain of ARC-
   related header fields.  The value of such a well-formed, valid chain
   needs to be interpreted with care since malicious content can be
   easily introduced by otherwise well-intended senders through machine
   or account compromises.  All normal content-based analysis still
   needs to be performed on any messages bearing a valid chain of ARC
   header sets.

9.2.  Marking and Sealing Invalid Chains

   The header fields signed by the AS header field b= value in the case
   of a major violation MUST be only the matching 'i=' instance headers
   created by the MTA which detected the malformed chain, as if this

Andersen, et al.        Expires January 22, 2018               [Page 11]
Internet-Draft                ARC-Protocol                     July 2017

   newest ARC set was the only set present.  (This is the same procedure
   required for handling major/structural validity problems.)

9.3.  Handling DNS Problems While Validating ARC

   DNS failures to resolve or return data which is needed for ARC
   validation SHOULD result in a 421 tempfail during the SMTP
   conversation with the sending system.  Temporary or intermittent DNS
   problems will generally not be sufficiently transitory to allow a
   mediator to obtain a different result during the ordinary transit
   duration so it is better to have the source system queue the
   problematic message(s) than to generate (potential) backscatter.

   DNS-based failures to verify a chain are treated no differently than
   any other ARC violation.  They result in a cv=fail verdict.

9.4.  Responding to ARC Validity Violations

   If a receiver determines that the ARC chain has failed, the receiver
   MAY signal the breakage through the extended SMTP response code 5.7.7
   [RFC3463] "message integrity failure" [ENHANCED-STATUS] and
   corresponding SMTP response code.

9.5.  Recording the Results of ARC Evaluation

   Receivers MAY add an "arc=[pass|fail|policy]" method annotation into
   a locally-affixed Authentication-Results [RFC7601] header field along
   with any salient comment(s).

9.5.1.  Output Information from an ARC Evaluation

   The evaluation of a series of ARC sets results in the following data
   which MAY be used to inform local-policy decisions:

   o  A list of the "d=" domains found in the validated (== all) ARC-
      Seal header fields;

   o  The "d=" domain found in the most recent (highest instance number)
      AMS header field (since that is the only one necessarily
      validated)

   In the case of a failed chain, only the terminal ARC set is covered
   by the ARC-Seal so the reporting is limited to the findings in that
   terminal ARC set.

Andersen, et al.        Expires January 22, 2018               [Page 12]
Internet-Draft                ARC-Protocol                     July 2017

9.5.2.  Reporting ARC Effects for DMARC Local Policy - Interim

   [[ Note: Discussion on the IETF DMARC-WG list has indicated some
   interest in more substantial reporting for analytic purposes.  To
   support that effort, the following guidance is provided only as an
   interim, minimal data set.  A more complete reporting construct will
   be specified in a related spec - TBD. (see also the note at
   Section 5.1) ]]

   Receivers SHOULD indicate situations in which ARC evaluation
   influenced the results of their local policy determination.  DMARC
   reporting of ARC-informed decisions is augmented by adding a
   local_policy comment explanation containing the list of data
   discovered in the ARC evaluation (Section 9.5.1):

   <policy_evaluated>
     <disposition>delivered</disposition>
     <dkim>fail</dkim>
     <spf>fail</spf>
     <reason>
      <type>local_policy</type>
      <comment>arc=pass ams=d2.example d=d2.example,d1.example</comment>
     </reason>
   </policy_evaluated>

   In the suggested sample, d2.example is the sealing domain for ARC[2]
   and d1.example is the sealing domain for ARC[1].

   Mediators SHOULD generate DMARC reports on messages which transit
   their system just like any other message which they receive.  This
   will result in multiple reports for each mediated message as they
   transit the series of handlers.  DMARC report consumers should be
   aware of this behaviour and make the necessary accommodations.

10.  Supporting Alternate Signing Algorithms

   [[ Note: Some additional development of this section is needed. ]]

   In the following branch diagrams, each algorithm is represented by an
   'A' or 'B' at each hop to depict the ARC chain that develops over a
   five hop scenario.  'x' represents a hop that does not support that
   algorithm.

   Note that during a transitional period where multiple algorithms are
   allowed, all of the statements in this spec which refer to "exactly
   one set of ARC headers per instance" need to be understood as "at
   least one set per instance and no more than one instance-set per
   algorithm".

Andersen, et al.        Expires January 22, 2018               [Page 13]
Internet-Draft                ARC-Protocol                     July 2017

10.1.  Introductory Period

   Intermediaries MUST be able to validate ARC chains build with either
   algorithm but MAY create ARC sets with either (or both) algorithm.

   The introductory period should be at least six (6) months.

10.2.  Co-Existence Period

   Intermediaries MUST be able to validate ARC chains build with either
   algorithm and MUST create ARC sets with both algorithms.  Chains
   ending with either algorithm may be used for the result.

10.3.  Deprecation Period

   ARC sets built with algorithms that are being deprecated MAY be
   considered valid within an ARC chain, however, intermediaries MUST
   not create additional sets with the deprecated algorithm.

   The deprecation period should be at least two (2) years.

11.  Privacy Considerations

   The ARC chain provides a verifiable record of the handlers for a
   message.  Anonymous remailers will probably not find this to match
   their operating goals.

12.  IANA Considerations

   This specification adds three new header fields as defined below.

12.1.  Authentication-Results Method Registry Update

   This draft adds one item to the IANA "Email Authentication Methods"
   registry:

   o  Method : arc

      Defined: [I-D.ARC]

      ptype: header

      Property: chain evaluation result

      Value: chain evaluation result status (see Section 5.3)

      Status: active

Andersen, et al.        Expires January 22, 2018               [Page 14]
Internet-Draft                ARC-Protocol                     July 2017

      Version: 1

12.2.  Definitions of the ARC header fields

   This specification adds three new header fields to the "Permanent
   Message Header Field Registry", as follows:

   o  Header field name: ARC-Seal

      Applicable protocol: mail

      Status: draft

      Author/Change controller: IETF

      Specification document(s): [I-D.ARC]

      Related information: [RFC6376]

   o  Header field name: ARC-Message-Signature

      Applicable protocol: mail

      Status: draft

      Author/Change controller: IETF

      Specification document(s): [I-D.ARC]

      Related information: [RFC6376]

   o  Header field name: ARC-Authentication-Results

      Applicable protocol: mail

      Status: standard

      Author/Change controller: IETF

      Specification document(s): [I-D.ARC]

      Related information: [RFC7601]

13.  Implementation Status

   [[ Note to the RFC Editor: Please remove this section before
   publication along with the reference to [RFC6982]. ]]

Andersen, et al.        Expires January 22, 2018               [Page 15]
Internet-Draft                ARC-Protocol                     July 2017

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC6982].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.

   This information is known to be correct as of the seventh
   interoperability test event which was held on 2017-07-15 & 16 at
   IETF99.

13.1.  GMail test reflector and incoming validation

   Organization: Google

   Description: Internal prototype implementation with both debug
   analysis and validating + sealing pass-through function

   Status of Operation: Production - Incoming Validation

   Coverage: Full spec implemented as of [ARC-DRAFT-03]

   Licensing: Proprietary - Internal only

   Implementation Notes: Full functionality was demonstrated during the
   interop testing on 2016-06-17

   In place for reporting usage only as of 2016-11-21 on all GMail
   flows.

   Rechecked general incoming validation as of 2017-02-24 interop event.

   Contact Info: arc-discuss@dmarc.org [1]

13.2.  AOL test reflector and internal tagging

   Organization: AOL

   Description: Internal prototype implementation with both debug
   analysis and validating + sealing pass-through function

   Status of Operation: Beta

Andersen, et al.        Expires January 22, 2018               [Page 16]
Internet-Draft                ARC-Protocol                     July 2017

   Coverage: ARC chain validity status checking is not operational, but
   otherwise this system conforms to [ARC-DRAFT-03]

   Licensing: Proprietary - Internal only

   Implementation Notes: Full functionality with the exception of chain
   validity checking was demonstrated during the interop testing on
   2016-06-17

   Available for production mail via selected account whitelisting for
   test validation only.

   Intermittent stability problems discovered at the interop event on
   2017-02-24.  Remediation underway as of the publication of this
   draft.

   Contact Info: arc-discuss@dmarc.org [2]

13.3.  dkimpy

   Organization: dkimpy developers

   Description: Python DKIM package

   Status of Operation: Production

   Coverage: The internal test suite is incomplete, but the command line
   developmental version of validator was demonstrated to interoperate
   with the Google and AOL implementations during the interop on
   2016-06-17 and the released version passes the tests in [ARC-TEST]
   https://github.com/ValiMail/arc_test_suite with both python and
   python3.

   Licensing: Open/Other (same as dkimpy package)

   Contact Info: https://launchpad.net/dkimpy

13.4.  OpenARC

   Organization: TDP/Murray Kucherawy

   Description: Implemention of milter functionality related to the
   OpenDKIM and OpenDMARC packages

   Status of Operation: Beta

   Coverage: Built to support [ARC-DRAFT-03]

Andersen, et al.        Expires January 22, 2018               [Page 17]
Internet-Draft                ARC-Protocol                     July 2017

   Licensing: Open/Other (same as OpenDKIM and OpenDMARC packages)

   Implementation Notes: The build is FreeBSD oriented and takes some
   tweaks to build on RedHat-based Linux platforms.

 Initial testing during the
 interop event on 2016-06-17 showed that it can be operational, but the
 documentation regarding configuration settings is unclear and the
 generated signature values do not validate when compared to the Google,
 AOL or dkimpy implementations.

 Testing during the 2017-02-24 interop event showed that some of the
 problems have been fixed, but there are still interoperability problems
 when trying to use OpenARC in a "sandwich" configuration around a MLM.

   Contact Info: arc-discuss@dmarc.org [3]

13.5.  Mailman addition

   Organization: Mailman development team

   Description: Integrated ARC capabilities within the Mailman package

   Status of Operation: Patch submitted

   Coverage: Unknown

   Licensing: Same as mailman package - GPL

   Implementation Notes: Incomplete at this time

   Contact Info: https://www.gnu.org/software/mailman/contact.html

13.6.  Copernica/MailerQ web-based validation

   Organization: Copernica

   Description: Web-based validation of ARC-signed messages

   Status of Operation: Beta

   Coverage: Built to support [ARC-DRAFT-03]

   Licensing: On-line usage only

   Implementation Notes: Released 2016-10-24

Andersen, et al.        Expires January 22, 2018               [Page 18]
Internet-Draft                ARC-Protocol                     July 2017

   Requires full message content to be pasted into a web form found at
   http://arc.mailerq.com/ (warning - https is not supported).

   An additional instance of an ARC signature can be added if one is
   willing to paste a private key into an unsecured web form.

   Initial testing shows that results match the other implementations
   listed in this section.

   Contact Info: [https://www.copernica.com/]

13.7.  Rspamd

   Organization: Rspamd community

   Description: ARC signing and verification module

   Status of Operation: Production, though deployment usage is unknown

   Coverage: Built to support [ARC-DRAFT-03]

   Licensing: Open source

   Implementation Notes: Released with version 1.6.0 on 2017-06-12

   Contact Info: [https://rspamd.com/doc/modules/arc.html] and
   [https://github.com/vstakhov/rspamd]

13.8.  PERL Mail::Milter::Authentication module

   Organization: FastMail

   Description: Email domain authentication milter, previously included
   SPF / DKIM / DMARC, now has ARC added

   Status of Operation: Intial validation completed during IETF99
   hackathon with some follow-on work during the week

   Coverage: Built to support [I-D.ARC]

   Licensing: Open Source

   Implementation Notes:

   Contact Info: https://github.com/fastmail/authentication_milter

Andersen, et al.        Expires January 22, 2018               [Page 19]
Internet-Draft                ARC-Protocol                     July 2017

14.  Security Considerations

   The Security Considerations of [RFC6376] and [RFC7601] apply directly
   to this specification.

   Inclusion of ARC sets in the header of emails may cause problems for
   some older or more constrained MTAs if they are unable to accept the
   greater size of the header.

   Operators who receive a message bearing N ARC sets has to complete
   N+1 DNS queries to evaluate the chain (barring DNS redirection
   mechanisms which can increase the lookups for a given target value).
   This has at least two effects:

   1.  An attacker can send a message to an ARC partipant with a
       concocted sequence of ARC sets bearing the domains of intended
       victims, and all of them will be queried by the participant until
       a failure is discovered.

   2.  DKIM only does one DNS check per signature, while this one can do
       many.  Absent caching, slow DNS responses can cause SMTP
       timeouts; this could be exploited as a DoS attack.

14.1.  Message Content Suspicion

   Recipients are cautioned to treat messages bearing ARC sets with the
   same suspicion that they apply to all other email messages.  This
   includes appropriate content scanning and other checks for
   potentially malicious content.  The handlers which are identified
   within the ARC-Seal chain may be used to provide input to local
   policy engines in cases where the sending system's DKIM-Signature
   does not validate.

15.  References

15.1.  Normative References

   [RFC1345]  Simonsen, K., "Character Mnemonics and Character Sets",
              RFC 1345, DOI 10.17487/RFC1345, June 1992,
              <http://www.rfc-editor.org/info/rfc1345>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

Andersen, et al.        Expires January 22, 2018               [Page 20]
Internet-Draft                ARC-Protocol                     July 2017

   [RFC2142]  Crocker, D., "Mailbox Names for Common Services, Roles and
              Functions", RFC 2142, DOI 10.17487/RFC2142, May 1997,
              <http://www.rfc-editor.org/info/rfc2142>.

   [RFC2606]  Eastlake 3rd, D. and A. Panitz, "Reserved Top Level DNS
              Names", BCP 32, RFC 2606, DOI 10.17487/RFC2606, June 1999,
              <http://www.rfc-editor.org/info/rfc2606>.

   [RFC3463]  Vaudreuil, G., "Enhanced Mail System Status Codes",
              RFC 3463, DOI 10.17487/RFC3463, January 2003,
              <http://www.rfc-editor.org/info/rfc3463>.

   [RFC4686]  Fenton, J., "Analysis of Threats Motivating DomainKeys
              Identified Mail (DKIM)", RFC 4686, DOI 10.17487/RFC4686,
              September 2006, <http://www.rfc-editor.org/info/rfc4686>.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234,
              DOI 10.17487/RFC5234, January 2008,
              <http://www.rfc-editor.org/info/rfc5234>.

   [RFC5321]  Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
              DOI 10.17487/RFC5321, October 2008,
              <http://www.rfc-editor.org/info/rfc5321>.

   [RFC5322]  Resnick, P., Ed., "Internet Message Format", RFC 5322,
              DOI 10.17487/RFC5322, October 2008,
              <http://www.rfc-editor.org/info/rfc5322>.

   [RFC5585]  Hansen, T., Crocker, D., and P. Hallam-Baker, "DomainKeys
              Identified Mail (DKIM) Service Overview", RFC 5585,
              DOI 10.17487/RFC5585, July 2009,
              <http://www.rfc-editor.org/info/rfc5585>.

   [RFC5598]  Crocker, D., "Internet Mail Architecture", RFC 5598,
              DOI 10.17487/RFC5598, July 2009,
              <http://www.rfc-editor.org/info/rfc5598>.

   [RFC5863]  Hansen, T., Siegel, E., Hallam-Baker, P., and D. Crocker,
              "DomainKeys Identified Mail (DKIM) Development,
              Deployment, and Operations", RFC 5863,
              DOI 10.17487/RFC5863, May 2010,
              <http://www.rfc-editor.org/info/rfc5863>.

Andersen, et al.        Expires January 22, 2018               [Page 21]
Internet-Draft                ARC-Protocol                     July 2017

   [RFC6376]  Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
              "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
              RFC 6376, DOI 10.17487/RFC6376, September 2011,
              <http://www.rfc-editor.org/info/rfc6376>.

   [RFC6377]  Kucherawy, M., "DomainKeys Identified Mail (DKIM) and
              Mailing Lists", BCP 167, RFC 6377, DOI 10.17487/RFC6377,
              September 2011, <http://www.rfc-editor.org/info/rfc6377>.

   [RFC6651]  Kucherawy, M., "Extensions to DomainKeys Identified Mail
              (DKIM) for Failure Reporting", RFC 6651,
              DOI 10.17487/RFC6651, June 2012,
              <http://www.rfc-editor.org/info/rfc6651>.

   [RFC7208]  Kitterman, S., "Sender Policy Framework (SPF) for
              Authorizing Use of Domains in Email, Version 1", RFC 7208,
              DOI 10.17487/RFC7208, April 2014,
              <http://www.rfc-editor.org/info/rfc7208>.

   [RFC7601]  Kucherawy, M., "Message Header Field for Indicating
              Message Authentication Status", RFC 7601,
              DOI 10.17487/RFC7601, August 2015,
              <http://www.rfc-editor.org/info/rfc7601>.

15.2.  Informative References

   [ARC-DRAFT-03]
              Andersen, K., Rae-Grant, J., Long, B., Adams, T., and S.
              Jones, "Authenticated Received Chain (ARC) Protocol
              (I-D-03)", April 2017, <https://tools.ietf.org/html/draft-
              ietf-dmarc-arc-protocol-03>.

   [ARC-TEST]
              Blank, S., "ARC Test Suite", January 2017,
              <https://github.com/ValiMail/arc_test_suite>.

   [ARC-USAGE]
              Jones, S., Adams, T., Rae-Grant, J., and K. Andersen,
              "Recommended Usage of the ARC Headers", December 2017,
              <https://tools.ietf.org/html/draft-ietf-dmarc-arc-usage-
              01>.

   [ENHANCED-STATUS]
              "IANA SMTP Enhanced Status Codes", n.d.,
              <http://www.iana.org/assignments/smtp-enhanced-status-
              codes/smtp-enhanced-status-codes.xhtml>.

Andersen, et al.        Expires January 22, 2018               [Page 22]
Internet-Draft                ARC-Protocol                     July 2017

   [RFC6982]  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", RFC 6982,
              DOI 10.17487/RFC6982, July 2013,
              <http://www.rfc-editor.org/info/rfc6982>.

   [RFC7489]  Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
              Message Authentication, Reporting, and Conformance
              (DMARC)", RFC 7489, DOI 10.17487/RFC7489, March 2015,
              <http://www.rfc-editor.org/info/rfc7489>.

   [RFC7960]  Martin, F., Ed., Lear, E., Ed., Draegen. Ed., T., Zwicky,
              E., Ed., and K. Andersen, Ed., "Interoperability Issues
              between Domain-based Message Authentication, Reporting,
              and Conformance (DMARC) and Indirect Email Flows",
              RFC 7960, DOI 10.17487/RFC7960, September 2016,
              <http://www.rfc-editor.org/info/rfc7960>.

15.3.  URIs

   [1] mailto:arc-discuss@dmarc.org

   [2] mailto:arc-discuss@dmarc.org

   [3] mailto:arc-discuss@dmarc.org

   [4] mailto:dmarc@ietf.org

   [5] mailto:arc-discuss@dmarc.org

Appendix A.  Appendix A - Example Usage (Obsolete but retained for
             illustrative purposes)

   [[ Note: The following examples were mocked up early in the
   definition process for the spec.  They no longer reflect the current
   definition and need various updates which will be included in draft
   -08. ]]

A.1.  Example 1: Simple mailing list

A.1.1.  Here's the message as it exits the Origin:

Andersen, et al.        Expires January 22, 2018               [Page 23]
Internet-Draft                ARC-Protocol                     July 2017

 Return-Path: <jqd@d1.example>
 Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
     (authenticated bits=0)
     by segv.d1.example with ESMTP id t0FN4a8O084569;
     Thu, 14 Jan 2015 15:00:01 -0800 (PST)
     (envelope-from jqd@d1.example)
 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
     s=20130426; t=1421363082;
     bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
     h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
      Content-Transfer-Encoding;
     b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijrvQw
      bv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4Gd3TRJl
      gotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
 Message-ID: <54B84785.1060301@d1.example>
 Date: Thu, 14 Jan 2015 15:00:01 -0800
 From: John Q Doe <jqd@d1.example>
 To: arc@dmarc.org
 Subject: Example 1

 Hey gang,
 This is a test message.
 --J.

A.1.2.  Message is then received at example.org

A.1.2.1.  Example 1, Step A: Message forwarded to list members

   Processing at example.org:

   o  example.org performs authentication checks

   o  No previous Auth-Results or ARC-Seal headers are present

   o  example.org adds ARC-Auth-Results header

   o  example.org adds Received: header

   o  example.org adds a ARC-Seal header

   Here's the message as it exits example.org:

Andersen, et al.        Expires January 22, 2018               [Page 24]
Internet-Draft                ARC-Protocol                     July 2017

 Return-Path: <jqd@d1.example>
 ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
     s=seal2015; d=example.org; cv=none;
     b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
      TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
      EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
 ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
     d=example.org; s=clochette; t=1421363105;
     bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
     h=List-Id:List-Unsubscribe:List-Archive:List-Post:
      List-Help:List-Subscribe:Reply-To:DKIM-Signature;
     b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF1F5
      vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3A+m4bw
      a6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
 Received: from segv.d1.example (segv.d1.example [72.52.75.15])
     by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
     for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
     (envelope-from jqd@d1.example)
 ARC-Authentication-Results: i=1; lists.example.org;
     spf=pass smtp.mfrom=jqd@d1.example;
     dkim=pass (1024-bit key) header.i=@d1.example;
     dmarc=pass
 Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
     (authenticated bits=0)
     by segv.d1.example with ESMTP id t0FN4a8O084569;
     Thu, 14 Jan 2015 15:00:01 -0800 (PST)
     (envelope-from jqd@d1.example)
 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
     s=20130426; t=1421363082;
     bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
     h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
      Content-Transfer-Encoding;
     b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijr
      vQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4G
      d3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
 Message-ID: <54B84785.1060301@d1.example>
 Date: Thu, 14 Jan 2015 15:00:01 -0800
 From: John Q Doe <jqd@d1.example>
 To: arc@example.org
 Subject: [Lists] Example 1

 Hey gang,
 This is a test message.
 --J.

Andersen, et al.        Expires January 22, 2018               [Page 25]
Internet-Draft                ARC-Protocol                     July 2017

A.1.3.  Example 1: Message received by Recipient

   Let's say that the Recipient is example.com

   Processing at example.com:

   o  example.com performs usual authentication checks

   o  example.com adds Auth-Results: header, Received header

   o  Determines that message fails DMARC

   o  Checks for ARC-Seal: header; finds one

   o  Validates the signature in the ARC-Seal: header, which covers the
      ARC-Authentication-Results: header

   o  example.com can use the ARC-Authentication-Results values or
      verify the DKIM-Signature from lists.example.org

   Here's what the message looks like at this point:

 Return-Path: <jqd@d1.example>
 Received: from example.org (example.org [208.69.40.157])
     by clothilde.example.com with ESMTP id
     d200mr22663000ykb.93.1421363207
     for <fmartin@example.com>; Thu, 14 Jan 2015 15:02:40 -0800 (PST)
 Authentication-Results: clothilde.example.com; spf=fail
     smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
     header.i=@example.org; dmarc=fail; arc=pass
 ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
     s=seal2015; d=example.org; cv=none;
     b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
      TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
      EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
 ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
     d=example.org; s=clochette; t=1421363105;
     bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
     h=List-Id:List-Unsubscribe:List-Archive:List-Post:
      List-Help:List-Subscribe:Reply-To:DKIM-Signature;
     b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF
      1F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3
      A+m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
 Received: from segv.d1.example (segv.d1.example [72.52.75.15])
     by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
     for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
     (envelope-from jqd@d1.example)
 ARC-Authentication-Results: i=1; lists.example.org;

Andersen, et al.        Expires January 22, 2018               [Page 26]
Internet-Draft                ARC-Protocol                     July 2017

     spf=pass smtp.mfrom=jqd@d1.example;
     dkim=pass (1024-bit key) header.i=@d1.example;
     dmarc=pass
 Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
     (authenticated bits=0)
     by segv.d1.example with ESMTP id t0FN4a8O084569;
     Thu, 14 Jan 2015 15:00:01 -0800 (PST)
     (envelope-from jqd@d1.example)
 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
     s=20130426; t=1421363082;
     bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
     h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
      Content-Transfer-Encoding;
     b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijrvQw
      bv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4Gd3TRJl
      gotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
 Message-ID: <54B84785.1060301@d1.example>
 Date: Thu, 14 Jan 2015 15:00:01 -0800
 From: John Q Doe <jqd@d1.example>
 To: arc@example.org
 Subject: [Lists] Example 1

 Hey gang,
 This is a test message.
 --J.

A.2.  Example 2: Mailing list to forwarded mailbox

A.2.1.  Here's the message as it exits the Origin:

Andersen, et al.        Expires January 22, 2018               [Page 27]
Internet-Draft                ARC-Protocol                     July 2017

 Return-Path: <jqd@d1.example>
 Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
     (authenticated bits=0)
     by segv.d1.example with ESMTP id t0FN4a8O084569;
     Thu, 14 Jan 2015 15:00:01 -0800 (PST)
     (envelope-from jqd@d1.example)
 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
     s=20130426; t=1421363082;
     bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
     h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
      Content-Transfer-Encoding;
     b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijrvQw
      bv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4Gd3TRJl
      gotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
 Message-ID: <54B84785.1060301@d1.example>
 Date: Thu, 14 Jan 2015 15:00:01 -0800
 From: John Q Doe <jqd@d1.example>
 To: arc@example.org
 Subject: Example 1

 Hey gang,
 This is a test message.
 --J.

A.2.2.  Message is then received at example.org

A.2.2.1.  Example 2, Step A: Message forwarded to list members

   Processing at example.org:

   o  example.org performs authentication checks

   o  example.org applies standard DKIM signature

   o  No previous Auth-Results or ARC-Seal headers are present

   o  example.org adds ARC-Auth-Results header

   o  example.org adds usual Received: header

   o  example.org adds a ARC-Seal header

   Here's the message as it exits Step A:

Andersen, et al.        Expires January 22, 2018               [Page 28]
Internet-Draft                ARC-Protocol                     July 2017

   Return-Path: <jqd@d1.example>
   ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
       s=seal2015; d=example.org; cv=none;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz6
        1TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L
        69EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
       d=example.org; s=clochette; t=1421363105;
       bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
       h=List-Id:List-Unsubscribe:List-Archive:List-Post:
        List-Help:List-Subscribe:Reply-To:DKIM-Signature;
       b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF
        1F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3
        A+m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
   Received: from segv.d1.example (segv.d1.example [72.52.75.15])
       by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
       for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
       (envelope-from jqd@d1.example)
   ARC-Authentication-Results: i=1; lists.example.org;
       spf=pass smtp.mfrom=jqd@d1.example;
       dkim=pass (1024-bit key) header.i=@d1.example;
       dmarc=pass
   Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
       (authenticated bits=0)
       by segv.d1.example with ESMTP id t0FN4a8O084569;
       Thu, 14 Jan 2015 15:00:01 -0800 (PST)
       (envelope-from jqd@d1.example)
   DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
       s=20130426; t=1421363082;
       bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
       h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
        Content-Transfer-Encoding;
       b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijr
        vQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4G
        d3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
   Message-ID: <54B84785.1060301@d1.example>
   Date: Thu, 14 Jan 2015 15:00:01 -0800
   From: John Q Doe <jqd@d1.example>
   To: arc@example.org
   Subject: [Lists] Example 1

   Hey gang,
   This is a test message.
   --J.

Andersen, et al.        Expires January 22, 2018               [Page 29]
Internet-Draft                ARC-Protocol                     July 2017

A.2.2.2.  Example 2, Step B: Message from list forwarded

   The message is delivered to a mailbox at gmail.com
   Processing at gmail.com:

   o  gmail.com performs usual authentication checks

   o  gmail.com adds Auth-Results: and Received: header

   o  Determines that message fails DMARC

   o  Checks for ARC-Seal: header; finds one

   o  Validates the signature in the ARC-Seal: header, which covers the
      ARC-Authentication-Results: header

   o  Uses the ARC-Auth-Results: values, but:

   o  Instead of delivering message, prepares to forward message per
      user settings

   o  Applies usual DKIM signature

   o  gmail.com adds it's own ARC-Seal: header, contents of which are

      *  version

      *  sequence number ("i=2")

      *  hash algorithm (SHA256 as example)

      *  timestamp ("t=")

      *  selector for key ("s=notary01")

      *  domain for key ("d=gmail.com")

      *  headers included in hash ("h=ARC-Authentication-Results:ARC-
         Seal")

      *  Note: algorithm requires only ARC-Seals with lower sequence #
         be included, in ascending order

      *  signature of the header hash

   Here's what the message looks like at this point:

   Return-Path: <jqd@d1.example>

Andersen, et al.        Expires January 22, 2018               [Page 30]
Internet-Draft                ARC-Protocol                     July 2017

   ARC-Seal: i=2; a=rsa-sha256; t=1421363253;
       s=notary01; d=gmail.com; cv=pass;
       b=sjHDMriRZ0Mui5eVEOGscRHWbQHcy97lvrduHQ8h+f2CfIrxUiKOE44x3LQwDWR
        YbDjf5fcM9MdcIahC+cP59BQ9Y9DHwMDzwRTnM7NVb4kY+tSaVnLoIOaP9lF/sut
        txO+RRNr0fCFw==
   ARC-Message-Signature: i=2; a=rsa-sha256; c=relaxed/relaxed;
       d=gmail.com; s=20120806;
       h=mime-version:content-type:x-original-sender:
        x-original-authentication-results:precedence:mailing-list:
        list-id:list-post:list-help:list-archive:sender:reply-to:
        list-unsubscribe:DKIM-Signature;
       bh=2+gZwZhUK2V7JbpoO2MTrU19WvhcA4JnjiohFm9ZZ/g=;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0Ab8Oi1ebYV/hIBmfhS
        LF1E80hMPcMijONfTQB6g5Hoh/kE6N2fgp6aSngL/WA3+g3Id8ElhXHvIGcJRFeM
        KdJqiW5cxdqPTRW+BnR5ee6Tzg06kr265NTDIAU8p8fQNuLfZj49MMA+QwDBJtXw
        bQoZyRtb6X6q0mYaszUB8kw==
   Received: by mail-yk0-f179.google.com with SMTP id 19so2728865ykq.10
       for <mailbox@gmail.com>; Thu, 14 Jan 2015 15:02:45 -0800 (PST)
   Authentication-Results: i=2; gmail.com; spf=fail
       smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
       header.i=@example.org; dmarc=fail; arc=pass
   ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
       s=seal2015; d=example.org; cv=none:
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
       d=example.org; s=clochette; t=1421363105;
       bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
       h=List-Id:List-Unsubscribe:List-Archive:List-Post:
        List-Help:List-Subscribe:Reply-To:DKIM-Signature;
       b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF
        1F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3
        A+m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
   Received: from segv.d1.example (segv.d1.example [72.52.75.15])
       by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
       for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
       (envelope-from jqd@d1.example)
   ARC-Authentication-Results: i=1; lists.example.org;
       spf=pass smtp.mfrom=jqd@d1.example;
       dkim=pass (1024-bit key) header.i=@d1.example;
       dmarc=pass
   Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
       (authenticated bits=0)
       by segv.d1.example with ESMTP id t0FN4a8O084569;
       Thu, 14 Jan 2015 15:00:01 -0800 (PST)

Andersen, et al.        Expires January 22, 2018               [Page 31]
Internet-Draft                ARC-Protocol                     July 2017

       (envelope-from jqd@d1.example)
   DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
       s=20130426; t=1421363082;
       bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
       h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
        Content-Transfer-Encoding;
       b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijr
        vQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4G
        d3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
   Message-ID: <54B84785.1060301@d1.example>
   Date: Thu, 14 Jan 2015 15:00:01 -0800
   From: John Q Doe <jqd@d1.example>
   To: arc@example.org
   Subject: [Lists] Example 1

   Hey gang,
   This is a test message.
   --J.

A.2.3.  Example 2: Message received by Recipient

   Let's say that the Recipient is example.com
   Processing at example.com:

   o  example.com performs usual authentication checks

   o  example.com adds Auth-Results: header, Received header

   o  Determines that message fails DMARC

   o  Checks for ARC-Seal: header; finds two

   o  Validates the signature in the highest numbered ("i=2") ARC-Seal:
      header, which covers all previous ARC-Seal: and ARC-
      Authentication-Results: headers

   o  Validates the other ARC-Seal header ("i=1"), which covers the ARC-
      Authentication-Results: header

   o  example.com uses the ARC-Authentication-Results: values

   Here's what the message looks like at this point:

   Return-Path: <jqd@d1.example>
   Received: from mail-ob0-f188.google.com (mail-ob0-f188.google.com
       [208.69.40.157]) by clothilde.example.com with ESMTP id
       d200mr22663000ykb.93.1421363268
       for <fmartin@example.com>; Thu, 14 Jan 2015 15:03:15 -0800 (PST)

Andersen, et al.        Expires January 22, 2018               [Page 32]
Internet-Draft                ARC-Protocol                     July 2017

   Authentication-Results: clothilde.example.com; spf=fail
       smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
       header.i=@gmail.com; dmarc=fail; arc=pass
   ARC-Seal: i=2; a=rsa-sha256; t=1421363253;
       s=notary01; d=gmail.com; cv=pass;
       b=sjHDMriRZ0Mui5eVEOGscRHWbQHcy97lvrduHQ8h+f2CfIrxUiKOE44x3LQwDWR
        YbDjf5fcM9MdcIahC+cP59BQ9Y9DHwMDzwRTnM7NVb4kY+tSaVnLoIOaP9lF/sut
        txO+RRNr0fCFw==
   ARC-Message-Signature: i=2; a=rsa-sha256; c=relaxed/relaxed;
       d=gmail.com; s=20120806;
       h=mime-version:content-type:x-original-sender:
        x-original-authentication-results:precedence:mailing-list:
        list-id:list-post:list-help:list-archive:sender:reply-to:
        :list-unsubscribe:DKIM-Signature;
       bh=2+gZwZhUK2V7JbpoO2MTrU19WvhcA4JnjiohFm9ZZ/g=;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0Ab8Oi1ebYV/hIBmfhS
        LF1E80hMPcMijONfTQB6g5Hoh/kE6N2fgp6aSngL/WA3+g3Id8ElhXHvIGcJRFeM
        KdJqiW5cxdqPTRW+BnR5ee6Tzg06kr265NTDIAU8p8fQNuLfZj49MMA+QwDBJtXw
        bQoZyRtb6X6q0mYaszUB8kw==
   Received: by mail-yk0-f179.google.com with SMTP id 19so2728865ykq.10
       for <mailbox@gmail.com>; Thu, 14 Jan 2015 15:02:45 -0800 (PST)
   Authentication-Results: i=2; gmail.com; spf=fail
       smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
       header.i=@example.org; dmarc=fail; arc=pass
   ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
       s=seal2015; d=example.org; cv=none;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
       d=example.org; s=clochette; t=1421363105;
       bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
       h=List-Id:List-Unsubscribe:List-Archive:List-Post:
        List-Help:List-Subscribe:Reply-To:DKIM-Signature;
       b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF
        1F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3
        A+m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
   Received: from segv.d1.example (segv.d1.example [72.52.75.15])
       by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
       for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
       (envelope-from jqd@d1.example)
   ARC-Authentication-Results: i=1; lists.example.org;
       spf=pass smtp.mfrom=jqd@d1.example;
       dkim=pass (1024-bit key) header.i=@d1.example;
       dmarc=pass
   Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])

Andersen, et al.        Expires January 22, 2018               [Page 33]
Internet-Draft                ARC-Protocol                     July 2017

       (authenticated bits=0)
       by segv.d1.example with ESMTP id t0FN4a8O084569;
       Thu, 14 Jan 2015 15:00:01 -0800 (PST)
       (envelope-from jqd@d1.example)
   DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=d1.example;
       s=20130426; t=1421363082;
       bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
       h=Message-ID:Date:From:MIME-Version:To:CC:Subject:Content-Type:
        Content-Transfer-Encoding;
       b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijr
        vQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4G
        d3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
   Message-ID: <54B84785.1060301@d1.example>
   Date: Thu, 14 Jan 2015 15:00:01 -0800
   From: John Q Doe <jqd@d1.example>
   To: arc@example.org
   Subject: [Lists] Example 1

   Hey gang,
   This is a test message.
   --J.

A.3.  Example 3: Mailing list to forwarded mailbox with source

A.3.1.  Here's the message as it exits the Origin:

Andersen, et al.        Expires January 22, 2018               [Page 34]
Internet-Draft                ARC-Protocol                     July 2017

  Return-Path: <jqd@d1.example>
  Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
      (authenticated bits=0)
      by segv.d1.example with ESMTP id t0FN4a8O084569;
      Thu, 14 Jan 2015 15:00:01 -0800 (PST)
      (envelope-from jqd@d1.example)
  ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
      s=origin2015; d=d1.example; cv=none;
      b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61T
       X6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69EU
       8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
  ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
      d=d1.example; s=20130426; t=1421363082;
      bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
      h=MIME-Version:CC:Content-Type:Content-Transfer-Encoding;
      b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijrv
       Qwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4Gd3
       TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
  Message-ID: <54B84785.1060301@d1.example>
  Date: Thu, 14 Jan 2015 15:00:01 -0800
  From: John Q Doe <jqd@d1.example>
  To: arc@example.org
  Subject: Example 1

  Hey gang,
  This is a test message.
  --J.

A.3.2.  Message is then received at example.org

A.3.2.1.  Example 3, Step A: Message forwarded to list members with
          source

   Processing at example.org:

   o  example.org performs authentication checks

   o  example.org applies standard DKIM signature

   o  Checks for ARC-Seal: header; finds one (i=1)

   o  Validates the signature in the ARC-Seal (i=1): header, which
      covers the d1.example ARC-Message-Signature: header

   o  example.org adds ARC-Auth-Results header

   o  example.org adds usual Received: header

Andersen, et al.        Expires January 22, 2018               [Page 35]
Internet-Draft                ARC-Protocol                     July 2017

   o  example.org adds a DKIM-Signature

   o  example.org adds a ARC-Seal header, contents of which are

      *  sequence number ("i=2")

      *  hash algorithm (SHA256 as example)

      *  timestamp ("t=")

      *  chain validity ("cv=")

      *  selector for key ("s=seal2015")

      *  domain for key ("d=example.org")

      *  signature ("b=")

   Here's the message as it exits Step A:

Andersen, et al.        Expires January 22, 2018               [Page 36]
Internet-Draft                ARC-Protocol                     July 2017

   Return-Path: <jqd@d1.example>
   ARC-Seal: i=2; a=rsa-sha256; t=1421363107;
       s=seal2015; d=example.org; cv=pass;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz6
        1TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L
        69EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=2; a=rsa-sha256; c=relaxed/relaxed;
       d=example.org; s=clochette; t=1421363105;
       bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
       h=List-Id:List-Unsubscribe:List-Archive:List-Post:
        List-Help:List-Subscribe:From:Reply-To:DKIM-Signature;
       b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF
        1F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3
        A+m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
   Received: from segv.d1.example (segv.d1.example [72.52.75.15])
       by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
       for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
       (envelope-from jqd@d1.example)
   ARC-Authentication-Results: i=2; lists.example.org;
       spf=pass smtp.mfrom=jqd@d1.example;
       dkim=pass (1024-bit key) header.i=@d1.example;
       dmarc=pass
   Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
       (authenticated bits=0)
       by segv.d1.example with ESMTP id t0FN4a8O084569;
       Thu, 14 Jan 2015 15:00:01 -0800 (PST)
       (envelope-from jqd@d1.example)
   ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
       s=origin2015; d=d1.example; cv=none;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
       d=d1.example; s=20130426; t=1421363082;
       bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
       h=MIME-Version:CC:Content-Type:Content-Transfer-Encoding;
       b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijr
        vQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4G
        d3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
   Message-ID: <54B84785.1060301@d1.example>
   Date: Thu, 14 Jan 2015 15:00:01 -0800
   From: John Q Doe <jqd@d1.example>
   To: arc@example.org
   Subject: [Lists] Example 1

   Hey gang,
   This is a test message.
   --J.

Andersen, et al.        Expires January 22, 2018               [Page 37]
Internet-Draft                ARC-Protocol                     July 2017

A.3.2.2.  Example 3, Step B: Message from list forwarded with source

   The message is delivered to a mailbox at gmail.com
   Processing at gmail.com:

   o  gmail.com performs usual authentication checks

   o  gmail.com adds Auth-Results: and Received: header

   o  Determines that message fails DMARC

   o  Checks for ARC-Seal: header; finds two

   o  Validates the signature in the ARC-Seal (i=2): header, which
      covers the ARC-Authentication-Results: header

   o  Validates the signature in the ARC-Seal (i=1): header, which
      covers the d1.example ARC-Message-Signature: header

   o  Uses the ARC-Auth-Results: values, but:

   o  Instead of delivering message, prepares to forward message per
      user settings

   o  Applies usual DKIM signature

   o  gmail.com adds it's own ARC-Seal: header, contents of which are

      *  version

      *  sequence number ("i=2")

      *  hash algorithm (SHA256 as example)

      *  timestamp ("t=")

      *  selector for key ("s=notary01")

      *  domain for key ("d=gmail.com")

      *  Note: algorithm requires only ARC-Seals with lower sequence #
         be included, in ascending order

      *  signature of the chain

   Here's what the message looks like at this point:

   Return-Path: <jqd@d1.example>

Andersen, et al.        Expires January 22, 2018               [Page 38]
Internet-Draft                ARC-Protocol                     July 2017

   ARC-Seal: i=3; a=rsa-sha256; t=1421363253;
       s=notary01; d=gmail.com; cv=pass;
       b=sjHDMriRZ0Mui5eVEOGscRHWbQHcy97lvrduHQ8h+f2CfIrxUiKOE44x3LQwD
        WRYbDjf5fcM9MdcIahC+cP59BQ9Y9DHwMDzwRTnM7NVb4kY+tSaVnLoIOaP9lF
        /suttxO+RRNr0fCFw==
   ARC-Message-Signature: i=3; a=rsa-sha256; c=relaxed/relaxed;
       d=gmail.com; s=20120806;
       h=mime-version:content-type:x-original-sender
        :x-original-authentication-results:precedence:mailing-list
        :list-id:list-post:list-help:list-archive:sender
        :list-unsubscribe:reply-to;
       bh=2+gZwZhUK2V7JbpoO2MTrU19WvhcA4JnjiohFm9ZZ/g=;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz6
        1TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L
        69EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0Ab8Oi1ebYV/hIBm
        fhSLF1E80hMPcMijONfTQB6g5Hoh/kE6N2fgp6aSngL/WA3+g3Id8ElhXHvIGcJ
        RFeMKdJqiW5cxdqPTRW+BnR5ee6Tzg06kr265NTDIAU8p8fQNuLfZj49MMA+QwD
        BJtXwbQoZyRtb6X6q0mYaszUB8kw==
   Received: by mail-yk0-f179.google.com with SMTP id 19so2728865ykq.10
       for <mailbox@gmail.com>; Thu, 14 Jan 2015 15:02:45 -0800 (PST)
   Authentication-Results: i=3; gmail.com; spf=fail
       smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
       header.i=@example.org; dmarc=fail; arc=pass
   ARC-Seal: i=2; a=rsa-sha256; t=1421363107;
       s=seal2015; d=example.org; cv=pass;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=2; a=rsa-sha256; c=relaxed/relaxed;
       d=example.org; s=clochette; t=1421363105;
       bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
       h=List-Id:List-Unsubscribe:List-Archive:List-Post:
        List-Help:List-Subscribe:Reply-To:DKIM-Signature;
       b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF1
        F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3A+
        m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
   Received: from segv.d1.example (segv.d1.example [72.52.75.15])
       by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123
       for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
       (envelope-from jqd@d1.example)
   ARC-Authentication-Results: i=2; lists.example.org;
       spf=pass smtp.mfrom=jqd@d1.example;
       dkim=pass (1024-bit key) header.i=@d1.example;
       dmarc=pass
   Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
       (authenticated bits=0)
       by segv.d1.example with ESMTP id t0FN4a8O084569;
       Thu, 14 Jan 2015 15:00:01 -0800 (PST)

Andersen, et al.        Expires January 22, 2018               [Page 39]
Internet-Draft                ARC-Protocol                     July 2017

       (envelope-from jqd@d1.example)
   ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
       s=origin2015; d=d1.example; cv=none;
       b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
        TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
        EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
   ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
       d=d1.example; s=20130426; t=1421363082;
       bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
       h=MIME-Version:CC:Content-Type:Content-Transfer-Encoding;
       b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYij
        rvQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD
        4Gd3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
   Message-ID: <54B84785.1060301@d1.example>
   Date: Thu, 14 Jan 2015 15:00:01 -0800
   From: John Q Doe <jqd@d1.example>
   To: arc@example.org
   Subject: [Lists] Example 1

   Hey gang,
   This is a test message.
   --J.

A.3.3.  Example 3: Message received by Recipient

   Let's say that the Recipient is example.com
   Processing at example.com:

   o  example.com performs usual authentication checks

   o  example.com adds Auth-Results: header, Received header

   o  Determines that message fails DMARC

   o  Checks for ARC-Seal: header; finds three

   o  Validates the signature in the highest numbered ("i=2") ARC-Seal:
      header, which covers all previous ARC-Seal: and ARC-
      Authentication-Results: headers

   o  Validates the other ARC-Seal header ("i=2"), which covers the ARC-
      Authentication-Results: header

   o  Validates the other ARC-Seal header ("i=1"), which covers the
      d1.example ARC-Message-Signature: header

   o  example.com uses the ARC-Authentication-Results: values

Andersen, et al.        Expires January 22, 2018               [Page 40]
Internet-Draft                ARC-Protocol                     July 2017

   Here's what the message looks like at this point:

Return-Path: <jqd@d1.example>
Received: from mail-ob0-f188.google.com (mail-ob0-f188.google.com
    [208.69.40.157]) by clothilde.example.com with ESMTP id
    d200mr22663000ykb.93.1421363268
    for <fmartin@example.com>; Thu, 14 Jan 2015 15:03:15 -0800 (PST)
Authentication-Results: clothilde.example.com; spf=fail
    smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
    header.i=@gmail.com; dmarc=fail; arc=pass
ARC-Seal: i=3; a=rsa-sha256; t=1421363253;
    s=notary01; d=gmail.com; cv=pass;
    b=sjHDMriRZ0Mui5eVEOGscRHWbQHcy97lvrduHQ8h+f2CfIrxUiKOE44x3LQwDW
     RYbDjf5fcM9MdcIahC+cP59BQ9Y9DHwMDzwRTnM7NVb4kY+tSaVnLoIOaP9lF/s
     uttxO+RRNr0fCFw==
ARC-Message-Signature: i=3; a=rsa-sha256; c=relaxed/relaxed;
    d=gmail.com; s=20120806;
    h=mime-version:content-type:x-original-sender
     :x-original-authentication-results:precedence
     :mailing-list:list-id:list-post:list-help:list-archive:sender
     :list-unsubscribe:reply-to;
    bh=2+gZwZhUK2V7JbpoO2MTrU19WvhcA4JnjiohFm9ZZ/g=;
    b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz6
     1TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L
     69EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0Ab8Oi1ebYV/hIBm
     fhSLF1E80hMPcMijONfTQB6g5Hoh/kE6N2fgp6aSngL/WA3+g3Id8ElhXHvIGcJ
     RFeMKdJqiW5cxdqPTRW+BnR5ee6Tzg06kr265NTDIAU8p8fQNuLfZj49MMA+QwD
     BJtXwbQoZyRtb6X6q0mYaszUB8kw==
Received: by mail-yk0-f179.google.com with SMTP id 19so2728865ykq.10
    for <mailbox@gmail.com>; Thu, 14 Jan 2015 15:02:45 -0800 (PST)
Authentication-Results: i=3; gmail.com; spf=fail
    smtp.from=jqd@d1.example; dkim=pass (1024-bit key)
    header.i=@example.org; dmarc=fail; arc=pass
ARC-Seal: i=2; a=rsa-sha256; t=1421363107;
    s=seal2015; d=example.org; cv=pass;
    b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz6
     1TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L
     69EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
ARC-Message-Signature: i=2; a=rsa-sha256; c=relaxed/relaxed;
    d=example.org; s=clochette; t=1421363105;
    bh=FjQYm3HhXStuzauzV4Uc02o55EzATNfL4uBvEoy7k3s=;
    h=List-Id:List-Unsubscribe:List-Archive:List-Post:
     List-Help:List-Subscribe:Reply-To:DKIM-Signature;
    b=Wb4EiVANwAX8obWwrRWpmlhxmdIvj0dv0psIkiaGOOug32iTAcc74/iWvlPXpF1
     F5vYVF0mw5cmKOa824tKkUOOE3yinTAekqnly7GJuFCDeSA1fQHhStVV7BzAr3A+
     m4bwa6RIDgr3rOPJil678dZTHfztFWyjwIUxB5Ajxj/M=
Received: from segv.d1.example (segv.d1.example [72.52.75.15])
    by lists.example.org (8.14.5/8.14.5) with ESMTP id t0EKaNU9010123

Andersen, et al.        Expires January 22, 2018               [Page 41]
Internet-Draft                ARC-Protocol                     July 2017

    for <arc@example.org>; Thu, 14 Jan 2015 15:01:30 -0800 (PST)
    (envelope-from jqd@d1.example)
ARC-Authentication-Results: i=2; lists.example.org;
    spf=pass smtp.mfrom=jqd@d1.example;
    dkim=pass (1024-bit key) header.i=@d1.example;
    dmarc=pass
Received: from [10.10.10.131] (w-x-y-z.dsl.static.isp.com [w.x.y.z])
    (authenticated bits=0)
    by segv.d1.example with ESMTP id t0FN4a8O084569;
    Thu, 14 Jan 2015 15:00:01 -0800 (PST)
    (envelope-from jqd@d1.example)
ARC-Seal: i=1; a=rsa-sha256; t=1421363107;
    s=origin2015; d=d1.example; cv=none;
    b=pCw3Qxgfs9E1qnyNZ+cTTF3KHgAjWwZz++Rju0BceSiuwIg0Pkk+3RZH/kaiz61
     TX6RVT6E4gs49Sstp41K7muj1OR5R6Q6llahLlQJZ/YfDZ3NImCU52gFWLUD7L69
     EU8TzypfkUhscqXjOJgDwjIceBNNOfh3Jy+V8hQZrVFCw0A=
ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
    d=d1.example; s=20130426; t=1421363082;
    bh=EoJqaaRvhrngQxmQ3VnRIIMRBgecuKf1pdkxtfGyWaU=;
    h=MIME-Version:To:CC:Subject:Content-Type:Content-Transfer-Encoding;
    b=HxsvPubDE+R96v9dM9Y7V3dJUXvajd6rvF5ec5BPe/vpVBRJnD4I2weEIyYijr
     vQwbv9uUA1t94kMN0Q+haFo6hiQPnkuDxku5+oxyZWOqtNH7CTMgcBWWTp4QD4G
     d3TRJlgotsX4RkbNcUhlfnoQ0p+CywWjieI8aR6eof6WDQ=
Message-ID: <54B84785.1060301@d1.example>
Date: Thu, 14 Jan 2015 15:00:01 -0800
From: John Q Doe <jqd@d1.example>
To: arc@example.org
Subject: [Lists] Example 1

Hey gang,
This is a test message.
--J.

Appendix B.  Acknowledgements

   This draft is the work of OAR-Dev Group.

   The authors thank all of the OAR-Dev group for the ongoing help and
   though-provoking discussions from all the participants, especially:
   Alex Brotman, Brandon Long, Dave Crocker, Elizabeth Zwicky, Franck
   Martin, Greg Colburn, J.  Trent Adams, John Rae-Grant, Mike Hammer,
   Mike Jones, Steve Jones, Terry Zink, Tim Draegen.

   Grateful appreciation is extended to the people who provided feedback
   through the discuss mailing list.

Andersen, et al.        Expires January 22, 2018               [Page 42]
Internet-Draft                ARC-Protocol                     July 2017

Appendix C.  Comments and Feedback

   Please address all comments, discussions, and questions to
   dmarc@ietf.org [4].  Earlier discussions can be found at arc-
   discuss@dmarc.org [5].

Authors' Addresses

   Kurt Andersen
   LinkedIn
   1000 West Maude Ave
   Sunnyvale, California  94085
   USA

   Email: kurta@linkedin.com

   Brandon Long (editor)
   Google

   Email: blong@google.com

   Steven Jones (editor)
   TDP

   Email: smj@crash.com

   Murray Kucherawy (editor)
   TDP

   Email: superuser@gmail.com

Andersen, et al.        Expires January 22, 2018               [Page 43]