Limited Additional Mechanisms for PKIX and SMIME
charter-ietf-lamps-02-00

Document Proposed charter Limited Additional Mechanisms for PKIX and SMIME WG (lamps)
Title Limited Additional Mechanisms for PKIX and SMIME
Last updated 2018-05-30
State External review Rechartering
WG State Active
IESG Responsible AD Eric Rescorla
Charter Edit AD Eric Rescorla
Telechat date (None)
Send notices to (None)

Charter
charter-ietf-lamps-02-00

The PKIX and S/MIME Working Groups have been closed for some time. Some
updates have been proposed to the X.509 certificate documents produced
by the PKIX Working Group and the electronic mail security documents
produced by the S/MIME Working Group.

The LAMPS (Limited Additional Mechanisms for PKIX and SMIME) Working
Group is chartered to make updates where there is a known constituency
interested in real deployment and there is at least one sufficiently
well specified approach to the update so that the working group can
sensibly evaluate whether to adopt a proposal.

The LAMPS WG is now tackling these topics:

1. Specify a discovery mechanism for CAA records to replace the one
described in RFC 6844.  Implementation experience has demonstrated an
ambiguity in the handling of CNAME and DNAME records during discovery
in RFC 6844, and subsequent discussion has suggested that a different
discovery approach would resolve limitations inherent in that approach.

2. Specify the use of SHAKE128/256 and SHAKE256/512 for PKIX and S/MIME.
Unlike the previous hashing standards, the SHA-3 family of functions are
the outcome of an open competition.  They have a clear design rationale
and have received a lot of public analysis, giving great confidence that
the SHA-3 family of functions are secure.  Also, since SHA-3 uses a very
different construction from SHA-2, the SHA-3 family of functions offers
an excellent alternative.  In particular, SHAKE128/256 and SHAKE256/512
offer security and performance benefits.

3. Specify the use of short-lived X.509 certificates for which no
revocation information is made available by the Certification Authority.
Short-lived certificates have a lifespan that is shorter than the time
needed to detect, report, and distribute revocation information, as a
result revoking them pointless.

4. Specify the use of a pre-shared key (PSK) along with other key
management techniques with supported by the Cryptographic Message
Syntax (CMS) as a near-term mechanism to protect present day
communication from the future invention of a large-scale quantum
computer.  The invention of a such a quantum computer would pose a
serious challenge for the key management algorithms that are widely
deployed, especially the key transport and key agreement algorithms
used today with the CMS to protect S/MIME messages.

5. Specify the use of hash-based signatures with the Cryptographic
Message Syntax (CMS).  A hash-based signature uses small private and
public keys, and it has low computational cost; however, the signature
values are quite large.  For this reason they might not be used for
signing X.509 certificates or S/MIME messages, but they are secure
even if a large-scale quantum computer is invented.  These properties
make hash-based signatures useful in some environments, such a the
distribution of software updates.

6. Specifies a certificate extension that is carried in a self-signed
certificate for a trust anchor, which is often called a Root
Certification Authority (CA) certificate, to identify the next
public key that will be used by the trust anchor.

In addition, the LAMPS WG may investigate other updates to documents
produced by the PKIX and S/MIME WGs, but the LAMPS WG shall not adopt
any of these potential work items without rechartering.

Proposed milestones

Date Milestone
Dec 2018 Hash-based signatures with the CMS sent to IESG for standards track publication
Oct 2018 The CMS with PSK sent to IESG for standards track publication
Oct 2018 Short-lived certificate conventions sent to IESG for BCP publication
Sep 2018 SHAKE128/256 and SHAKE256/512 for S/MIME sent to IESG for standards track publication
Sep 2018 SHAKE128/256 and SHAKE256/512 for PKIX sent to IESG for standards track publication
Aug 2018 Root key rollover certificate extension sent to IESG for informational publication
Jul 2018 rfc6844bis sent to IESG for standards track publication
Jun 2018 Adopt a draft for root key rollover certificate extension
Jun 2018 Adopt a draft for hash-based signatures with the CMS
Jun 2018 Adopt a draft for the CMS with PSK
Jun 2018 Adopt a draft for short-lived certificate conventions